
Learning from Demonstration for Autonomous Navigation in

Complex Unstructured Terrain

David Silver, J. Andrew Bagnell, Anthony Stentz
Carnegie Mellon University

Pittsburgh, PA, USA

June 24, 2010

Abstract

Rough terrain autonomous navigation continues to
pose a challenge to the robotics community. Robust
navigation by a mobile robot depends not only on
the individual performance of perception and plan-
ning systems, but on how well these systems are cou-
pled. When traversing complex unstructured terrain,
this coupling (in the form of a cost function) has a
large impact on robot behavior and performance, ne-
cessitating a robust design. This paper explores the
application of Learning from Demonstration to this
task for the Crusher autonomous navigation plat-
form. Using expert examples of desired navigation
behavior, mappings from both online and offline per-
ceptual data to planning costs are learned. Chal-
lenges in adapting existing techniques to complex on-
line planning systems and imperfect demonstration
are addressed, along with additional practical consid-
erations. The benefits to autonomous performance of
this approach are examined, as well as the decrease
in necessary designer effort. Experimental results are
presented from autonomous traverses through com-
plex natural environments.

1 Introduction

The capability of autonomous robotic systems to suc-
cessfully navigate through difficult environments con-
tinues to advance [Kelly et al., 2006, Buehler, 2006].
Ever improving high resolution sensors and percep-
tion algorithms allow a mobile robot to build a de-
tailed model of its environment, and advances in plan-
ning systems allow for the generation of ever more
complex routes and trajectories towards achieving a
navigation goal. However, as perception and plan-
ning systems become more complex, so does the task
of coupling these systems.

A common division of responsibility in mobile

robotics tasks a perception system with construct-
ing a discrete model of the environment. This model
is then interpreted into an appropriate form for use
by a planning system, which determines the robot’s
actions. In the simplest case, this interpretation de-
termines which locations in the environment model
the robot can and cannot traverse through (i.e. an
obstacle versus freespace or traversable versus non-
traversable distinction). A planning system then
computes a path through traversable regions of the
environment. In this way, perception and planning
are coupled through a binary classification of the en-
vironment.

While such a binary approach was utilized in
the early days of outdoor autonomous navigation
[Olin and Tseng, 1991], more recent work of the past
decade has shown it to be insufficient for navigating
complex unstructured environments. Rough natural
terrain is not easily partitioned into clear traversable
and non-traversable classes; while certain objects
may be obvious non-traversable obstacles, unstruc-
tured environments generally present a continuum of
terrain that could fall into the traversable category
such as steep slopes, ditches, smaller (surmountable)
objects, and widely varying vegetation (Figure 1).
A binary interpretation results in no distinction be-
tween these different terrain features, resulting in be-
havior that is either overly aggressive or conservative
(Figure 2).

As these issues have become better under-
stood, the result has been a move to sys-
tems that use a continuous coupling between
perception and planning [Kelly et al., 2006,
Lacaze et al., 2002, Stentz et al., 2007,
Singh et al., 2000, Urmson et al., 2006,
Biesiadecki and Maimone, 2006]. Such a cou-
pling is commonly called a Cost Function. A cost
function maps terrain features produced by percep-
tion to a scalar cost value, with lower cost terrain
being preferable to higher cost terrain. A planning

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
24 JUN 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Learning from Demonstration for Autonomous Navigation in Complex
Unstructured Terrain

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Rough terrain autonomous navigation continues to pose a challenge to the robotics community. Robust
navigation by a mobile robot depends not only on the individual performance of perception and planning
systems, but on how well these systems are coupled. When traversing complex unstructured terrain this
coupling (in the form of a cost function) has a large impact on robot behavior and performance,
necessitating a robust design. This paper explores the application of Learning from Demonstration to this
task for the Crusher autonomous navigation platform. Using expert examples of desired navigation
behavior, mappings from both online and offline perceptual data to planning costs are learned. Challenges
in adapting existing techniques to complex online planning systems and imperfect demonstration are
addressed, along with additional practical considerations. The benefits to autonomous performance of this
approach are examined, as well as the decrease in necessary designer effort. Experimental results are
presented from autonomous traverses through complex natural environments.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

system then computes a trajectory that minimizes
the accrued cost of traversed terrain.

While using a continuous definition of cost allows
for more intelligent behavior, it also increases the
complexity of deploying a properly functioning robot.
Systems that used a traversable or non-traversable
distinction only had to solve a binary classification
problem. This mapping completely determined the
behavior of the robot (with respect to where it pre-
ferred to drive); essentially, the desired behavior of
the robot was encoded in the classification func-
tion mapping perceptual data to traversable or non-
traversable. However, in a system with continuous
costs, in essence a full regression problem must be
solved. That is, the desired behavior of a robot is
encoded not in a mapping from terrain properties to
a binary class, but in a mapping from terrain prop-
erties to a scalar value that encodes preferences (see
Figure 2).

This mapping from terrain properties to cost is
far more complex than a binary mapping, as it en-
codes far more complex behavior (through continu-
ous output). Worse, the preferences amongst terrain
types are not always well understood, because the
metric for performance is rarely concretely defined.
Common metrics for autonomous behavior include
maximizing safety or probability of success, minimiz-
ing distance traveled or time taken, minimizing net
energy loss, minimizing observability or maximizing
sensor coverage. However, often the actual desired
robot behavior optimizes a combination of such met-
rics; for example, it may be desirable for a robot to
approximately maximize safety but take certain risks
to minimize distance traveled. Encoding a single met-
ric into a cost function is sufficiently difficult, but
properly inferring the correct weighting to construct
a multi-criterion optimization problem is even more
daunting. Fundamentally, while humans are good at
driving in complex or off-road environments, they are
not good at articulating their preferences in doing so.

Therefore, as preferences that mobile robotic sys-
tems are expected to exhibit become more complex,
the task of encoding these preferences in a cost func-
tion will become both more difficult and time con-
suming, while at the same time becoming more cen-
tral to improving performance. Unfortunately, this
challenge has not received a great deal of focus; it is
often only briefly mentioned in the literature. With
respect to costs defined over patches of terrain, the
mapping to cost from terrain parameters or features
is rarely described in detail, usually with the state-
ment that it was simply constructed and hand-tuned
to provide good empirical performance.

The issue of cost function design and tuning

was central during the development of Crusher
[Stentz et al., 2007, Bagnell et al., 2010](Figure 1), a
vehicle designed from scratch for off-road autonomous
mobility. Crusher is capable of traversing steep
slopes, deep washes and ditches, large boulders, and
dense vegetation. Robust navigation through such
terrain requires a proper description of preferences
over such terrain (e.g. how far should Crusher travel
through dense vegetation to avoid a small ditch).
Complicating matters further is the complexity of the
perceptual inputs that navigating such environments
necessitates; complex terrain requires a high dimen-
sional description in order to sufficiently encode all
the relevant features (see Figure 3). Finally, Crusher
receives multiple sources of perceptual input: along
with the ever changing stream of perceptual data
produced onboard the vehicle, static prior data was
available at varying resolution over large areas of op-
eration (potentially hundreds of square kilometers)
[Silver et al., 2006, Silver et al., 2008]. This necessi-
tated multiple cost functions for interpreting these
disjoint data sources that encoded robust behavior
both individually and when fused together.

This paper explores the application of a learn-
ing from demonstration approach to this challenge.
Specifically, algorithms are presented for learning
generalizable terrain cost functions from expert
demonstration of desired behavior. This approach
can both reduce development effort and improve per-
formance when applied to mobile robotic systems.
The next section provides a brief overview of pre-
vious and related work in coupling perception and
planning systems through cost functions. Section 3
presents the basic theory of our approach, and Sec-
tion 4 describes its practical adaptation to mobile
robotics. Experimental results from the Crusher sys-
tem are provided in Section 5, with discussion and
conclusion in Section 6.

2 Related Work

2.1 Hand Tuned Cost Functions

Manual hand tuning and engineering has by far been
the most common approach to constructing cost
functions for mobile robotic systems. Often, this is
done with little or no formalism; cost function design
by hand remains one of the ’black arts’ of mobile
robotics, and has been applied to untold numbers of
robotic systems. However, there has previously been
work that created reusable frameworks for manual
design and tuning of cost functions to map perceptual
features into scalar costs [Stentz and Hebert, 1995,
Singh et al., 2000, Balakirsky and Lacaze, 2000,

2

Figure 1: The Crusher autonomous mobility platform is capable of cross-country traverse through rough,
complex, and unstructured terrain

Seraji and Howard, 2002, Huertas et al., 2005,
Biesiadecki and Maimone, 2006] The common
thread amongst these approaches is that they con-
struct a parameterized mapping from a perceptual
input space to a scalar cost, and then adjust the
mapping to produce costs that result in good robot
performance. In this way, the behavior of an entire
robotic system is simply tuned to get a desired
result.

This approach has several disadvantages. It is po-
tentially quite time consuming; as complex environ-
ments necessitate full featured and high dimensional
descriptions, often on the order of dozens of features
per discrete location. Worse still, there is often not
a clear relationship between these features and cost.
Therefore, engineering a cost function by hand is akin
to manually solving a high dimensional optimization
problem using local gradient methods. Evaluating
each candidate function requires validation through
either actual or simulated robot performance. Such
a manual process requires a very detailed knowledge
of both a robot’s perception and planning systems;
therefore the necessary effort must come from a po-
tential small pool of full system experts.

Additionally, this tedious process is never truly
completed, but rather remains ongoing. Whenever
incorrect behavior is observed, the cost function may
need to be revisited. This is especially problematic
when operating in a novel environment or scenario,

as there is no guarantee that a manually tuned cost
function will generalize well. It is also possible that
multiple cost functions may be necessary to support
different subsets of available perceptual data. Finally,
if the perception system itself is ever modified to add,
remove, or modify existing features (a very common
occurrence during development of a fielded system),
the cost function must also be redesigned or retuned.

However, perhaps the biggest issue with manually
tuning a cost function is that there is no formalism
behind it. That is, there is no theory to explain why a
certain cost function produces good behavior, or how
well it will generalize to novel environments. Fur-
ther, even if sufficient validation is performed on a
candidate cost function, there is nothing to indicate
its absolute performance; that is, it may be sufficient,
but could it still be better? As with many optimiza-
tion procedures, manual parameter tuning is likely
to suffer diminishing returns, and will quickly reach
a point where human effort and patience is unlikely
to improve a parameterization further. Such a forced
early stopping will always leave lingering questions,
and can make blame assignment difficult. That is, if
the robot experiences a navigation failure (e.g. drives
over something it should not have, or avoids some-
thing it did not need to) its unclear whether the
blame lies with perception, planning, or their cou-
pling (the cost function).

3

Figure 2: Examples illustrating the effect of different cost functions on a robot’s behavior. Left: In simple
environments with only well defined obstacles and freespace, a wide range of cost functions will produce
nearly equivalent behavior. Center: With a single class of intermediate terrain (bushes), several different
paths are optimal depending on the relative cost of bushes and freespace. Right: With multiple classes of
intermediate terrain, the variety of paths that could be optimal (depending on the relative cost of bushes,
grass, and freespace) is further increased. In such scenarios, the tuning of a cost function will dramatically
affect a robot’s behavior. If only binary cost functions were utilized, the variety of reproducible behavior
would be diminished.

2.2 Physical Simulation

Another common approach to engineering this
problem away is the use of accurate physi-
cal simulation [Olin and Tseng, 1991, Kelly, 1995,
Iagnemma et al., 1999, Helmick et al., 2009] to at-
tempt to predict the consequences of a robot travers-
ing a patch of terrain. Instead of requiring a mapping
from perceptual features to cost, this can transform
the problem to one of mapping from predicted ve-
hicle state to cost. At times, this can result in a
simpler or more intuitive domain for constructing a
cost function; however, it could also make the prob-
lem more difficult (if the vehicle state is higher di-
mensional than the perceptual feature space). Re-
gardless, there is still a requirement to construct a
mapping from a description of a behavior to a cost
function that implies preferences.

Another possible use of physical simulation is to
model the probability of terrain being traversable.
That is, a simulation could compute the probability
that interaction with a specified terrain patch would
result in a vehicle failure (e.g. exceed a tip-over an-
gle or known force limits). The concept of explicitly
using analog (as opposed to binary) traversability as
a cost function (and therefore defining terrain prefer-
ences with respect to traversability) is yet another
way of engineering around a manually tuned cost
function. However, it is not without serious draw-
backs. Fundamental amongst them is that it lim-
its the metric that the autonomous system can opti-

mize to pure maximization of vehicle safety. While
in certain contexts this may be desirable, the inabil-
ity to ever indicate that slight risk should be taken
to balance a different tradeoff (distance traveled, time
taken, energy consumption, etc.) can seriously limit a
system. For example, a mobile system that navigated
purely based on traversability would likely have dif-
ficulty properly differentiating between perfectly flat
and slightly angled terrain, or between small obsta-
cles of different size, or sparse vegetation of varying
height. The end result is that a traversability score
rearely directly maps to a cost that produces desired
behavior; a cost function (that may heavily depend
on traversability estimates) is still required. Finally,
performing such a full, accurate simulation is quite
difficult, especially using noisy perceptual data as in-
put.

2.3 Supervised Classification

A different approach that can also simplify the pa-
rameter tuning problem is the use of supervised clas-
sification. The general technique is to reduce a high
dimensional perceptual feature space into a lower di-
mensional space with more semantic meaning. Su-
pervised classification is an obvious choice for such
a transformation: while an engineer may have diffi-
culty in designing rules to classify different patches of
terrain, he can much more easily define the class that
each patch should belong to. Rather than manually
constructing rules to map from perceptual features to

4

Figure 3: Left: Raw perception data from Crusher, in the form of camera images and colorized LiDAR.
Right: 2D costs derived from perception data, and a resulting planned path. Brighter pixels indicate higher
cost.

classifications, a learning system can automatically
generate the necessary rules, given examples of sets
of features and their desired classification.

The primary advantage (with respect to au-
tonomous behavior) of performing a supervised
classification is a remapping of a perceptual fea-
ture space into one that is lower dimensional and
potentially more intuitive. Some perceptual fea-
tures have an intuitive, monotonic relationship
to concepts such as safety and speed. However,
many features do not provide this intuition; for
example, if a terrain patch has a high blue tint,
does that make it more or less dangerous? If
a supervised classification stage is inserted after
perceptual feature generation but before costing, it
may simplify the parameter tuning problem; not
only may there be fewer parameters, but they may
be more intuitive, especially if classes are defined
as semantic or material distinctions (bush, rock,
tree grass, dirt, etc.). For this reason, this general
approach is popular for the purpose of perceptual
interpretation in unstructured environments, and
has been widely applied [Talukder et al., 2002,
Manduchi et al., 2005, Lalonde et al., 2006,
Bradley et al., 2007, Dima et al., 2004,
Rasmussen, 2002, Angelova et al., 2007,
Halatci et al., 2007, Karlsen and Witus, 2007].

However, while supervised multi-class classification
may make costing more tractable, it does not actually
solve the core problem; the parameter tuning task has
only been simplified. While classifier outputs may
have a more intuitive relationship to the correct be-
havior, it can still be difficult and time consuming
to determine the proper relative weightings of var-

ious classes. As there is no guarantee that the se-
lected taxonomy is relevant to mobility behavior, it
may take a lot of effort for a classification system
to distinguish varying classes of vegetation, but that
effort is wasted if those vegetation classes are indis-
tinguishable with regards to mobility. In such a case,
a large error in classification would produce only a
small error in vehicle behavior. The converse can
also occur; tiny errors in classification between cer-
tain classes may produce large errors in behavior (if
for example traversable vegetation is confused with
a rigid obstacle). This makes it difficult to relate
classification performance to mobility performance.
Defining classes specifically with respect to relative
mobility [Happold and Ollis, 2007] is a partial solu-
tion, but makes data labeling far less intuitive.

Additionally, this approach can potentially hurt
overall performance. Classification into a lower di-
mensional space can be viewed as a form of dimen-
sionality reduction. However, as classes may not be
directly related to robot mobility or behavior, this re-
duction does not take into account the final use of the
data, and can potentially obscure or eliminate useful
information. Finally, while supervised classification
can reduce the time and effort required in one tun-
ing problem, the total effort throughout the system is
not necessarily reduced; the classification system now
must be tuned. Labeling a large representative data
set for training and validation also entails a signifi-
cant manual effort. Whenever the classifier changes,
due to perception system change or additions to the
training set, the costing of the classifications must be
re-examined and possibly re-tuned.

An alternate use of supervised classification has

5

been to treat the task as a specific two class prob-
lem: classifying terrain as either traversable or
non-traversable. Labels can be gathered either of-
fline [Seraji and Howard, 2002, Howard et al., 2007]
or online [Thrun et al., 2006, Sun et al., 2007] by ob-
serving where an expert drives a robot; nearby
terrain that is not traversed is treated as having
been labeled non-traversable in a noisy manner1.
[Ollis et al., 2007] involves similar data collection,
but only for labeling of traversable terrain; explicit
examples of non-traversable regions are not required.
The issues with this approach are twofold. First, the
labeling is likely to be very noisy, especially if exam-
ples of non-traversable terrain are obtained by using
terrain located near traversable examples. More im-
portantly, just as with physical simulation a probabil-
ity of traversability, even if accurate, rarely directly
maps to the correct behavior.

2.4 Self-Supervised Learning from
Experience

In contrast with learning approaches that require ex-
plicit supervision from an (usually human) expert,
self-supervised approaches require no expert interac-
tion. Instead, a robot uses its own interactions with
the world to slowly learn how to interpret what it per-
ceives; the robot learns and adapts from experience.
As opposed to requiring outside supervision and in-
struction, the robot can learn from its own mistakes.
This allows robots equipped with self-supervision to
adapt to novel environments or scenarios with little
to no human intervention, and is a powerful tool for
achieving both robustness and reusability. Unsurpris-
ingly, online self-supervised approaches to learning
have gained increasing popularity in recent years.

Approaches for self-supervised online learning can
be divided into two distinct classes. The first is
near-to-far learning that learns how to interpret
a far-range, lower resolution sensor using a near
range, higher-resolution sensor. Near-to-far learning
is achieved by recalling how specific patches of terrain
were perceived by a far range sensor, and then later
observing them with a near-range sensor. This pro-
vides a correspondence between the output of the two
sensing modalities, and provides the necessary data
to learn a mapping. Examples of such approaches in-
clude learning to interpret monocular vision systems
from shorter range LiDAR [Dahlkamp et al., 2006]
or stereo [Hadsell et al., 2009] range data, learn-

1This approach is fundamentally different from standard
imitation learning in that demonstration is used purely as a
data labeling technique; offline hand labeling could be used
with similar results

Figure 4: An example of near-to-far learning from
[Sofman et al., 2006]. In this example, as a robot
drives through an environment (left to right) it uses
its short range sensors to train the interpretation of
a far range sensor (in this case the satellite image at
left)

ing to map near range traversability estimates
to far range estimates [Bajracharya et al., 2008,
Procopio et al., 2007], and learning to map full cost
functions from near to far [Sofman et al., 2006] (Fig-
ure 4). However, near-to-far learning still requires
a (preexisting) correct interpretation of near-range
sensors. In fact, this near-range interpretation is in-
creased in importance, since it is being used as a
ground truth signal for learning.

The other distinct class of self-supervised learning
is learning from proprioception, also called learning
from underfoot. As opposed to near-to-far learning,
the ground truth signal comes not from a higher
resolution exteroceptive sensor, but from propri-
oceptive sensors. Aside from this distinction, the
methodology is quite similar: as the robot drives
over a patch of terrain, it recalls how that terrain
appeared in its near-range sensors just moments
ago. This sets up a correspondence between how
terrain appears, and how the robot interacts with
it. These correspondences can be used to learn
to model the robot’s interactions with terrain
by predicting various terramechanical properties,
such as roughness [Stavens and Thrun, 2006],
vehicle slip [Angelova et al., 2007], soil cohesion
[Iagnemma et al., 2004], or vegetation height

6

[Wellington et al., 2006]. Predictions can then be
either be used directly to determine robot behav-
ior (i.e. as input into a cost function), or used
to improve the accuracy of a physical simulation
[Helmick et al., 2009]. While these approaches cer-
tainly provide useful information that can drastically
improve a robot’s robustness and adaptation, they do
not directly address the general problem of mapping
from features of terrain to terrain preferences.

Another approach to learning from proprioception
is to attempt to directly learn traversability by ob-
serving what terrain a robot can and can not success-
fully traverse [Shneier et al., 2008, Kim et al., 2006].
However, this approach has the same drawbacks
as previously described techniques based on pure
traversability. That is, it ignores the possibility of rel-
ative preferences amongst equally traversable patches
of terrain. This issue also applies to other single
metric learning from proprioception; for example, a
robot that learns to estimate its own speed over dif-
ferent terrains would never be able to differentiate
between terrains on which maximum speed is possi-
ble but different mobility risk is encountered. More
importantly, this online approach to labeling terrain
as non-traversable requires explicit interaction with
non-traversable terrain (e.g. the robot must drive
into an obstacle to learn that it is an obstacle). Not
only is this dangerous, it also results in a poten-
tially difficult blame assignment problem (determin-
ing which patch or patches of terrain were responsible
for a failure).

2.5 Learning From Expert Demon-
stration

Given the difficulty in manually engineering a
coupling between perception and planning systems,
an alternative solution is to avoid this problem
altogether by learning to directly map perception to
actions. This can be accomplished through learn-
ing from demonstration, also known as imitation
learning. A key principle of imitation learning is
that while it may be very difficult to quantify why
a certain behavior is desirable, the actual correct
behavior is usually known by a human expert.
Therefore, rather than having a human expert
tune a system to achieve desired behavior, the
expert can demonstrate desired behavior and the
robot can tune itself to match the demonstration.
Learning from demonstration has a long history
with mobile robotics, starting with the ALVINN
system [Pomerleau, 1989] and continuing through
more recent applications [LeCun et al., 2006,
Howard et al., 2005, Hamner et al., 2006].

These approaches to learning from demonstration
all fall into the category of action prediction: given
the state of the world, or features of the state of the
world, they attempt to predict the action that the hu-
man demonstrator would have selected. The funda-
mental problem with pure action prediction is that it
is a purely reactive approach to planning. There is no
attempt to model or reason about the consequences of
a chosen action. Therefore, all relevant information
must be encoded in the current state or features of
the state. For certain scenarios this is feasible; path
trackers are a classic example. However, in general
the use of purely reactive systems is incredibly diffi-
cult for planning long range, goal directed behavior
through complex unstructured environments.

An alternative to action prediction finds its roots in
the idea of Inverse Optimal Control [Kalman, 1964].
While optimal control seeks a trajectory through a
state space that optimizes some known metric, in-
verse optimal control seeks a metric such that a
known trajectory through a state space is optimal un-
der said metric. Within mobile robotics, the parallel
would be to learn a cost function such that a robot’s
planning system will reproduce expert2 demonstrated
behavior. Such an approach automates the hand con-
struction and tuning of cost functions that is preva-
lent in actual deployments. Not only does automat-
ing this procedure result in large reduction in design
effort, it can potentially produce a better coupling;
automatic optimization need not be nearly as con-
cerned with diminishing returns, and can continue
until convergence. Further, an automated approach
can take advantage of standard cross validation tech-
niques to ensure that a learned coupling is robust and
will generalize well. Finally, if collection of expert
demonstration includes raw sensor data, changes to
sensor processing within a perception system do not
result in additional human effort with respect to a
cost function; existing demonstrations can simply be
reprocessed and coupling relearned.

Inverse Reinforcement Learning
[Ng and Russell, 2000] was the first application
of this idea to the framework of Markov Decision
Processes commonly used for motion planning in
mobile robotics. This framework was later modified
into a new approach known as Apprenticeship Learn-
ing [Abbeel and Ng, 2004]. Apprenticeship learning
resulted in an algorithm that produced linear cost
functions such that any planned behavior would have
the same cost as demonstrated behavior (between
equivalent start and end conditions); however there

2This expert need no longer be a full system expert, but
rather only needs to have the necessary intuition to understand
how the robot should drive

7

was no mechanism for explicitly matching expert
behavior. Additionally, the final solution was a
stochastic mixture of multiple policies. The Maxi-
mum Margin Planning (MMP) [Ratliff et al., 2006]
framework addressed these problems by producing
a single deterministic solution while also ensuring
an upper bound on the mismatch between demon-
strated and planned behavior. More recent work has
extended the MMP framework to non-linear cost
functions [Ratliff et al., 2009, Silver et al., 2008], and
was applied to Crusher for the task of learning a cost
function to interpret both static and dynamic percep-
tual data [Silver et al., 2009a, Silver et al., 2009b].

3 Learning to Interpret Per-
ceptual Data from Expert
Demonstration

The MMP framework treats learning from demon-
stration as a constrained optimization problem. In
decision theory, a utility function is defined as a rela-
tive ordering over all possible options. Since most
mobile robotic systems encounter an infinite num-
ber of possible plans, such an explicit ordering is not
possible. Instead, plans are scored by a cost func-
tion, and cost defines the ordering. However, this
core idea of an ordering of preferences remains use-
ful. If an expert can concretely define a relative or-
dering over even a small subset of possible plans, this
ordering becomes a constraint on the cost function:
the costs assigned to each possible plan must match
the relative ordering. The more information on rela-
tive preferences an expert provides, the more the cost
function is constrained.

This section first derives the basic MMP algo-
rithm for learning a linear cost function to repro-
duce expert demonstration. Next the LEARCH al-
gorithm (LEArning to seaRCH) [Ratliff et al., 2009,
Silver et al., 2008] is presented for extending this ap-
proach to non-linear cost functions. The MMP frame-
work and associated algorithms are defined over gen-
eral Markov Decision Processes. However, without
loss of generality, this derivation is restricted to deter-
ministic MDPs with a set of absorbing states; that is,
goal directed path or motion planners. This change
is purely for notational simplification, as most mo-
bile robotic systems use planners of this form. Ad-
ditionally, only cost functions defined over states are
considered, as opposed to full state-action pairs (see
Section 6).

3.1 Maximum Margin Planning with
Linear Cost Functions

Consider a state space S through which a planner
operates (e.g. S = R2). A feature space F is de-
fined over S. That is, for every x ∈ S, there exists
a corresponding feature vector Fx ∈ F . Fx can be
considered as the raw output of a perception system
at state x3. For the output of a perception system to
be used by a planner, it must be mapped to a scalar
cost value; Therefore, C is defined as a cost function,
C : F → R+. The cost of a state x is C(Fx). For
the moment, only linear cost functions of the form
C(F) = wT F are considered; the weight vector w
completely defines the cost function. Finally, a path
P is defined as a sequence of states in S that lead
from a start s to a goal g. The cost of an entire
path is simply defined as the sum of the costs of all
states along the path, or alternatively the cost of the
cumulative feature counts

C(P) =
∑
x∈P

C(Fx) =
∑
x∈P

wT Fx = wT
∑
x∈P

Fx (1)

Now consider an example path Pe from a start state
se to a goal state ge. If this example path is pro-
vided via expert demonstration, then its is reasonable
to consider applying inverse optimal control; that is,
seeking to find a cost function C such that Pe is the
optimal path from se to ge. While a single example
demonstration does not imply a single cost function,
it does constrain the space of cost functions C: only
cost functions that consider Pe the optimal path are
acceptable. For now, it is assumed that all Pe are at
least near optimal under at least one C ∈ C; Section
4.2 will relax this assumption.

If a regularization term is also added to encourage
simple solutions, then the task of finding an accept-
able cost function from an example can be phrased
as the following constrained optimization problem:

minimize O(w) = ||w||2 (2)
subject to the constraints∑

x∈P̂

(wT Fx) ≥
∑
x∈Pe

(wT Fx)

∀P̂ s.t. P̂ 6= Pe, ŝ = se, ĝ = ge

Unfortunately, this optimization has a trivial so-
lution: w = ~0. This issue can be addressed by in-
cluding a margin in each constraint. The size of the

3For now it is assumed that the assignment of a feature
vector to a state is static; the extension to dynamic assignment
is addressed in Section 4.1

8

margin is dependent on the similarity between paths;
the example only needs to be slightly lower cost than
a very similar path, but should be much lower cost
than a very different path. Similarity between Pe and
an arbitrary path P is encoded by a loss function
L(Pe, P), or alternatively Le(P)4. The definition of
the loss function is somewhat application dependant;
the simplest form would be to simply consider how
many states the two paths share (a Hamming loss).
The effect of the scale of the margin is removed by
the regularization term. The constrained optimiza-
tion can now be rewritten as

minimize O(w) = ||w||2 (3)
subject to the constraints∑

x∈P̂

(wT Fx − Le(x)) ≥
∑
x∈Pe

(wT Fx)

∀P̂ s.t. P̂ 6= Pe, ŝ = se, ĝ = ge

Le(x) =
{

1 if x ∈ Pe

0 otherwise

Depending on the state space, and the distance
from se to ge, there are likely to be an infeasible (and
possibly infinite) number of constraints; one for each
alternate path to the demonstrated example. How-
ever, it is not necessary to enforce every constraint.
For any candidate cost function, there is a minimum
cost path between any two waypoints, P∗. It is only
necessary to enforce the constraint for P∗, as once it
is satisfied by definition all other constraints will be
satisfied. With this single constraint, (3) becomes

minimize O(w) = ||w||2 (4)
subject to the constraint∑

x∈P∗

(wT Fx − Le(x)) ≥
∑
x∈Pe

(wT Fx)

P∗ = arg min
P̂

∑
x∈P̂

(wT Fx − Le(x))

It may not always be possible to exactly meet
this constraint (the margin may make it impossible).
Therefore, a slack term ζ is added to allow for this
possibility.

4As a path is considered just a sequence of states, the loss
function can be defined either over a full path or over a single
state.

minimize O(w) = λ||w||2 + ζ (5)
subject to the constraint∑

x∈P∗

(wT Fx − Le(x)) −
∑
x∈Pe

(wT Fx) + ζ ≥ 0

The slack term ζ accounts for the error in meet-
ing the constraint, while λ balances the tradeoff in
the objective between regularization and meeting the
constraint. However, the slack variable will always
be tight; that is ζ will always be exactly equal to the
difference in path costs. Therefore, ζ can be replaced
in the objective by the constraint, resulting in the
following (unconstrained) optimization problem

minimize O(w) = λ||w||2 + (6)∑
x∈Pe

(wT Fx) −
∑

x∈P∗

(wT Fx − Le(x))

or alternatively

minimize O(w) = λ||w||2 + (7)∑
x∈Pe

(wT Fx) − min
P̂

∑
x∈P̂

(wT Fx − Le(x))

The final optimization seeks to minimize the dif-

ference in cost between the example path Pe and the
(loss augmented) optimal path P∗, subject to reg-
ularization. O(w) is convex, but non-differentiable;
therefore, instead of gradient descent, it can be min-
imized using the sub-gradient method with learning
rate η. The sub-gradient of O with respect to w is

∇O = 2λw +
∑
x∈Pe

Fx −
∑

x∈P∗

Fx (8)

Intuitively, (8) says that the direction that will
most minimize the objective function is found by
comparing feature counts. If more of a certain fea-
ture is encountered on the example path than the
current minimum cost path P∗, the weight on that
feature (and therefore the cost) should be decreased.
Likewise, if less of a feature is encountered on the
example path than on P∗, the weight should be in-
creased. Although the margin does not appear in the
final sub-gradient, it does affect the computation of
P∗. The final linear MMP algorithm consists of iter-
atively computing feature counts and then updating
the cost function until convergence. However, one fi-
nal caveat is to ensure that only cost functions that
map to R+ are considered (a requirement of most

9

Algorithm 1: The linear MMP algorithm
Inputs : Example Paths P 1

e , P 2
e , ..., Pn

e ,
Feature Map F

w0 = ~0;
for j = 1...K do

M = buildCostmap(wj−1,F);
Fe = F∗ = ~0;
foreach P i

e do
P i
∗ = planLossAugPath(start(P i

e),
goal(P i

e),
M);

foreach x ∈ P i
e do

Fe+ = Fe + Fx;
foreach x ∈ P i

∗ do
F∗ = F∗ + Fx;

wj = wn−1 + ηi[F∗ − Fe − λwj−1];
enforcePositivityConstraint (wj ,F);

return wK

motion and path planners). This is achieved by iden-
tifying F such that wT F ≤ 0, and projecting w back
into the space of allowable cost functions.

The MMP framework easily supports the use of
multiple example paths. Each example implies its
own constraints as in (4), its own objective as in (7),
and its own sub-gradient as in (8). Updating the cost
weights can take place either on a per example basis,
or the feature counts can be computed in a batch
with a single update. The latter is computationally
preferable, as it may result in fewer cost function eval-
uations, and projections back into the space of allow-
able cost functions. The final linear MMP algorithm
is presented in Algorithm 1.

3.2 MMP with Non-Linear Cost
Functions

The derivation to this point has assumed that the
space of possible cost functions C consists of all func-
tions of the form C(F) = wT F . Extension to other,
more descriptive spaces of cost functions is possible
by considering (7) for any cost function C

minimize O[C] = λReg(C) (9)

+
∑
x∈Pe

C(Fx) − min
P̂

∑
x∈P̂

(C(Fx)− Le(x))

O[C] is now an objective functional over a cost func-
tion, and Reg represents a regularization functional.
We can now consider the sub-gradient in the space of

cost functions

∇OF [C] = λ∇RegF [C]+
∑
x∈Pe

δF (Fx) −
∑

x∈P∗

δF (Fx)

(10)
P∗ = arg min

P̂

∑
x∈P̂

(C(Fx)− Le(x))

where δ is the Dirac delta at the point of evaluation.
Simply speaking, the functional gradient is positive
at values of F corresponding to states in the example
path, and negative at values of F corresponding to
states in the current planned path. If the paths both
contain a state corresponding to F , their contribu-
tions cancel.

Applying gradient descent directly in this space
would result in an extreme form of overfitting; es-
sentially, it would involve raising or lowering the cost
associated with specific values of F encountered on
either path, and would therefore produce no general-
ization whatsoever. Instead, a different space of cost
functions is considered

C ={C | C =
∑

i

ηiRi(F), Ri ∈ R, ηi ∈ R} (11)

R ={R | R : F → R ∧ Reg(R) < ν}

C is now defined as the space of weighted sums of
functions Ri ∈ R, where R is a space of functions of
limited complexity that map from the feature space
to a scalar. Choices of R include linear functions,
parametric functions, neural networks, decision trees,
etc. As in gradient boosting [Mason et al., 2000], this
space represents a limited set of ‘directions’ for which
a small step can be taken; the choice of the direction
set in turn controls the complexity of C.

With this new definition, a gradient descent update
takes the form of projecting the functional gradient5

onto the direction set by finding the element R∗ ∈ R
that maximizes the inner product 〈−∇OF [C], R∗〉.
The maximization of the inner product between the
functional gradient and the hypothesis space can be
understood as a learning problem:

R∗ = arg max
R
〈−∇OF [C], R〉

= arg max
R

∑
x∈Pe∩P∗

−∇OF [C]R(Fx)

= arg max
R

∑
x∈Pe∩P∗

αxyxR(Fx) (12)

αx = | 5 OFx
[C]| yx = −sgn(5OFx

[C])

In this form, it can be seen that finding the projection
of the functional gradient involves solving a weighted

5For the moment, the regularization term is ignored.

10

classification problem; the element of R that best
discriminates between features vectors for which the
cost should be raised or lowered maximizes the in-
ner product. Alternatively, defining R as a class of
regressors adds an additional regularization to each
individual R∗ [Ratliff et al., 2009]. Intuitively, the re-
gression targets yx are positive in regions of the fea-
ture space that the planned path visits more than the
example path (indicating a desire to raise the cost),
and negative in regions that the example path visits
more than the planned path. Each regression target
is weighted by a factor αx based on the magnitude of
the functional gradient.

In comparison to the linear MMP formulation, this
approach can be understood as trying to minimize the
error in visitation counts instead of feature counts.
For a given feature vector F and path P , the visita-
tion count U is the cumulative count of the number
of states x ∈ P such that Fx = F . The visitation
counts can be split into positive and negative com-
ponents, corresponding to the current planned and
example paths. Formally

U+(F) =
∑

x∈P∗

δF (Fx)

U−(F) =
∑
x∈Pe

δF (Fx)

U(F) = U+ − U− =
∑

x∈P∗

δF (Fx) −
∑
x∈Pe

δF (Fx)

(13)

Comparing this formulation to (10) demonstrates
that the planned visitation counts minus the example
visitation counts equals the negative functional gra-
dient (ignoring regularization). This allows for the
computation of regression targets and weights purely
as a function of the visitation counts, providing a
straight forward implementation (Algorithm 2) mak-
ing use of off the shelf regression approaches (repre-
sented by Rj).

A final addition to this algorithm involves a slightly
different approach to optimization. Gradient descent
can be understood as encouraging functions that are
’small’ in the l2 norm; by controlling the learning
rate η and the number of epochs, it is possible to
constrain the complexity of the learned cost function.
However, instead we can consider exponentiated func-
tional gradient descent, which is a generalization of
exponentiated gradient to functional gradient descent
[Ratliff et al., 2009]. Exponentiated functional gradi-
ent descent encourages functions that are ‘sparse’ in
the sense of having many small values and a few po-
tentially large values. This change results in C being

Algorithm 2: The LEARCH algorithm
Inputs : Example Paths P 1

e , P 2
e , ..., Pn

e ,
Feature Map F

C0 = 1;
for j = 1...K do

M = buildCostmap(Cj−1,F);
U+ = U− = ~0;
foreach P i

e do
P i
∗ = planLossAugPath(start(P i

e),
goal(P i

e),
M);

foreach x ∈ P i
e do

U−(Fx) = U−(Fx) + 1;
foreach x ∈ P i

∗ do
U+(Fx) = U+(Fx) + 1;

Tf = To = Tw = ∅;
U = U+ − U−;
foreach Fx such that U(Fx) 6= 0 do

Tf = Tf

⋃
Fx;

To = To

⋃
sgn(U(Fx));

Tw = Tw

⋃
|U(Fx)|;

Rj = trainWeightedRegressor(Tf , To, Tw);
Cj = Cj−1 ∗ eηjRj ;

return CK

redefined as

C ={C | C = e
P

i ηiRi(F), Ri ∈ R, ηi ∈ R} (14)

Another beneficial effect of this redefined space is
that C naturally maps to R+ without any need for
projecting the result of each gradient descent update
into the space of valid cost functions. This final algo-
rithm for non-linear inverse optimal control is called
LEARCH [Ratliff et al., 2009, Silver et al., 2008] and
is presented in Algorithm 2. An example of the algo-
rithm in action is presented in Figure 5.

It should be noted that while seemingly sim-
ilar, LEARCH is fundamentally different from
supervised classification approaches presented in
[Thrun et al., 2006, Sun et al., 2007]. While exam-
ples of ’good’ terrain are collected in a similar man-
ner, these approaches simply assume that terrain near
where the vehicle was demonstrated driving should
be labeled as ’bad’; the assumption is that a clas-
sifier will be able to deal with the noisy labeling.
In contrast, LEARCH determines a set of states for
which the total cost must be increased; otherwise the
demonstration would have traversed through those
states. Essentially, negative examples of where to
drive are implied by where the demonstrator explic-
itly chose not to drive, rather than simply nearby re-
gions that the demonstrator could have driven. Addi-

11

Figure 5: An example of the LEARCH algorithm learning to interpret satellite imagery (Top) as costs
(Bottom). Brighter pixels indicate higher cost. As the cost function evolves (left to right), the current plan
(green) recreates more and more of the example plan (red). Quickbird imagery courtesy of Digital Globe,
Inc. Images cover approximately 300 m X 250 m.

Figure 6: Generalization of the LEARCH algorithm. The cost function learned from the single example in
Figure 5 generalizes over terrain never seen during training (shown at approximately 1/2 scale) resulting in
similar planner behavior. 3 sets of waypoints (Left) are shown along with the corresponding paths (Center)
planned under the learned cost function (Right).

tionally, the terrain that the demonstration traversed
is not explicitly considered as ’good’ terrain; rather
its costs are only lowered until the path is preferred
(for specified waypoints); there could still be high cost
regions along it. This distinction allows LEARCH to
generalize well over areas for which is was not explic-
itly trained (Figure 6).

4 Adaptation and Application
to Mobile Robotic Systems

4.1 Extension to Dynamic and Un-
known Environments

The previous derivation of MMP and LEARCH only
considered the scenario where the mapping from
states to features is static and fully known a pri-
ori. Recent work [Silver et al., 2009b] has extended
the LEARCH algorithm to the scenario where nei-
ther of these assumptions holds, such as when fea-

tures are generated from a mobile robot’s perception
system. The limited range inherent in onboard sens-
ing implies a great deal of the environment may be
unknown; for truly complex navigation tasks, the dis-
tance between waypoints is generally at least one or
two orders of magnitude larger than the sensor range.
Further, changing range and point of view from envi-
ronmental structures means that even once an object
is within range, its perceptual features are continu-
ally changing. Finally, there are the actual dynamics
of the environment: objects may move, lighting and
weather conditions can change, etc.

Since onboard perceptual inputs are not static, a
robot’s current plan must be continually recomputed.
The original MMP constraint must be altered in the
same way: rather than enforcing the optimality of
the entire example behavior once, the optimality of all
example behavior must be continually enforced as the
current plan is recomputed. Formally, we add a time
index t to account for dynamics. F t

x represents the
perceptual features of state x at time t. P t

e represents

12

the example behavior starting from the current state
at time t to the goal, with associated loss function
Lt

e. The objective becomes

minimize O[C] = λReg(C)

+
∑

t

 ∑
x∈P t

e

C(F t
x)−min

P̂ t

 ∑
x∈P̂ t

(C(F t
x)− Lt

e(x))

(15)

the new functional gradient is

5OF [C] =
∑

t

 ∑
x∈P t

e

δF (F t
x) −

∑
x∈P t

∗

δF (F t
x)

(16)

P t
∗ = arg min

P t

[∑
x∈P t

(C(F t
x)− Lt

e(x))

]
The cost function C does not have a time index: the
optimization is searching for the single cost function
that best reproduces example behavior over an entire
time sequence.

It is important to clarify exactly what P t
e repre-

sents. Until now, the terms plan and behavior have
been interchangeable. This is true in the static case
since the environment never evolves; as long as a plan
is sufficiently followed, it does not need to be recom-
puted. However, in the dynamic case, an expert’s
plan and behavior are different notions: the plan is
the currently intended future behavior, and the be-
havior is the result of previous plans. Therefore, P t

e

would ideally be the expert’s plan at time t, not ex-
ample behavior from time t onwards.

However, this information is generally not avail-
able: it would require the recording of an expert’s
instantaneous plan at each point in time. Even if a
framework for such a data collection were to be im-
plemented, it would turn the collection of training
data into an extremely tedious and expensive pro-
cess. Therefore, in practice we approximate the cur-
rent plan of an expert P t

e with the expert’s behavior
from t onwards. Unfortunately, this approximation
can potentially create situations where the example
at certain timesteps is suboptimal or inconsistent.
The consequences of this inconsistency and possible
solutions are discussed in Section 4.2 (see Figure 9).

Once dynamics have been accounted for, the lim-
ited range of onboard sensing can be addressed. At
time t, there may be no perceptual features available
corresponding to the (potentially large) section of the
example path that is outside of current perceptual
range. In order to perform long range navigation,
a mobile robotic system must already have some ap-
proach to planning through terrain it has not directly

sensed. Solutions include the use of prior knowledge
[Silver et al., 2008], extrapolation from recent experi-
ence [Urmson et al., 2006], or simply to assume uni-
form properties of unknown terrain.

Therefore, we define the set of visible states at time
t as Vt. The exact definition of visible depends on
the specifics of the underlying robotic system’s data
fusion: Vt should include all states for which the cost
of state x at time t is computed with the cost function
currently being learned, C 6. For all other states
V̄t, we can assume the existence of some alternate
function for computing cost, CV̄(x); again this could
be as simple as a constant.

Since we have explicitly defined Vt as the set of
states at time t for which C is the correct mechanism
for computing cost, the cost of a general path P t is
now computed as∑

x∈P t∩Vt

C(F t
x) +

∑
x∈P t∩V̄t

CV̄(x)

It is important to note that CV̄(x) is not dependent
on F t

x. With this new formulation for the cost of a
path, the objective functional becomes

minimize O[C] = λReg(C) (17)

+
∑

t

 ∑
x∈P t

e∩Vt

C(F t
x) +

∑
x∈P t

e∩V̄t

CV̄(x)

−

∑
t

min
P̂ t

 ∑
x∈P̂ t∩Vt

(C(F t
x)− Lt

e(x))

+
∑

x∈P̂ t∩V̄t

CV̄(x)

with functional gradient

5OF [C] =
∑

t

 ∑
x∈P t

e∩Vt

δF (F t
x) −

∑
x∈P t

∗∩Vt

δF (F t
x)

(18)

P t
∗ = arg min

P̂ t

 ∑
x∈P̂ t∩Vt

(C(F t
x)− Lt

e(x))

+
∑

x∈P̂ t∩V̄t

CV̄(x)

6In the case of Crusher, Vt includes all locations that are

within current sensor range, and have been observed by said
sensors.

13

since the gradient is computed with respect to C, it
is only nonzero for visible states; the CV̄(x) terms
disappear. However, CV̄ still factors into the planned
behavior, and therefore does affect the learned com-
ponent of the cost function. Just as LEARCH learns
C to recreate desired behavior when using a specific
planner, it learns C to recreate behavior when us-
ing a specific CV̄ . However, if the example behavior
is inconsistent with CV̄ , it will be more difficult for
the planned behavior to match the example. Such
an inconsistency could occur if the expert has differ-
ent prior knowledge than the robot, or interprets the
same knowledge differently. Inconsistency can also
occur due to the previously discussed mismatch be-
tween expert plans and expert behavior. A solution
to this problem is discussed in Section 4.2.

The projection of the functional gradient onto the
hypothesis space becomes

R∗ = arg max
R

∑
t

 ∑
x∈(Pe∪P∗)∩Vt

αt
xyt

xR(F t
x)

 (19)

Contrasting the final form for R∗ with that of
(12) helps to summarize the changes that result in
the LEARCH algorithm for dynamic environments.
Specifically, a single expert demonstration from start
to goal is discretized by time, with each timestep serv-
ing as an example of what behavior to plan given all
data to that point in time. For each of these dis-
cretized examples, only visitation counts in visible
states are used. The resulting algorithm is presented
as Algorithm 3.

A final detail for a LEARCH implementation is the
source of the input perceptual features. Rather than
computing and logging these features online, it is use-
ful to record all raw sensor data, and then to compute
the features by simulating perception offline. This
allows existing expert demonstration to be reused if
new feature extractors are added, or existing ones
modified; perception is simply re-simulated to pro-
duce the new inputs. In this way, learning a cost
function when the perception system is modified re-
quires no additional expert interaction.

4.2 Imperfect and Inconsistent
Demonstration

The MMP framework implicitly assumes that one or
more cost functions exist under which demonstrated
behavior is near optimal. Generally this is not the
case, as there will always be noise in human demon-
stration. Further, multiple examples possibly col-
lected from different environments and different ex-
perts may be inconsistent with each other (due to

Algorithm 3: The dynamic LEARCH algorithm
Inputs : Example Behaviors P 1

e , P 2
e , ..., Pn

e ,
Sensor Histories H1,H2, ...,Hn, Cost
Map CV̄

C0 = 1;
foreach P i

e do
for τ =firstTime(P i

e): ∆τ :lastTime(P i
e)

do
P τ,i

e =
extractPathSeg(P i

e , τ,lastTime(P
i
e));

[Fτ,i,Vτ,i] =
simPerception(Hi,firstTime(P i

e),τ);

for j = 1...K do
U += U− = ~0;
foreach P t,i

e do
Mt,i =
buildCostmap(Ci−1,F t,i,Vt,i,CV̄);
P t,i
∗ = planLossAugPath(start(P t,i

e),
goal(P t,i

e),
Mt,i);

foreach x ∈ P t,i
e

⋂
Vt,i do

U−(F t,i
x) = U−(F t,i

x) + 1;

foreach x ∈ P t,i
∗

⋂
Vt,i do

U+(F t,i
x) = U+(F t,i

x) + 1;

Tf = To = Tw = ∅;
U = U+ − U−;
foreach F t,i

x such that U(F t,i
x) 6= 0 do

Tf = Tf

⋃
F t,i

x ;
To = To

⋃
sgn(U(F t,i

x));
Tw = Tw

⋃
|U(F t,i

x)|;
Rj = trainWeightedRegressor(Tf , To, Tw);
Cj = Cj−1 ∗ eηjRj ;

return CK

inconsistency in human behavior, a different concept
of what is desirable, or an incomplete perceptual de-
scription of the environment by the robot.) Finally,
sometimes experts are flat out wrong, and demon-
strate behavior that is not even close to desirable.

While the MMP framework is robust to poor train-
ing data, it does suffer degraded overall performance
and generalization, in the same way that supervised
classification performance is degraded by noisy or
mislabeled training data. Attempting to have an ex-
pert sanitize the training input after initial demon-
stration is disadvantageous for two reasons. First it
creates an additional need for human involvement,
eliminating some of the time savings promised by
this approach. Second, it assumes that an expert
can detect all errors; while this may be true for ex-
treme cases, a human expert may be no more capa-

14

Algorithm 4: The dynamic LEARCH algorithm
with example replanning and weight balancing
Inputs : Example Behaviors P 1

e , P 2
e , ..., Pn

e ,
Sensor Histories H1,H2, ...,Hn, Cost
Map CV̄ , Corridor width β

C0 = 1;
foreach P i

e do
for τ =firstTime(P i

e): ∆τ :lastTime(P i
e)

do
P τ,i

e =
extractPathSeg(P i

e , τ,lastTime(P
i
e));

[Fτ,i,Vτ,i] =
simPerception(Hi,firstTime(P i

e),τ);

for j = 1...K do
U += U− = ~0;
foreach P t,i

e do
Mt,i =
buildCostmap(Ci−1,F t,i,Vt,i,CV̄);
P t,i
∗ = planLossAugPath(start(P t,i

e),
goal(P t,i

e),
Mt,i);

Mt,i
β,Vt,i =

buildCorridorCostmap(Mt,i,β,Vt,i);
P t,i

e∗ = replanExample(start(P t,i
e),

goal(P t,i
e),

Mt,i
β,Vt,i ,);

foreach x ∈ P t,i
e∗

⋂
Vt,i do

U−(F t,i
x) = U−(F t,i

x) + 1;

foreach x ∈ P t,i
∗

⋂
Vt,i do

U+(F t,i
x) = U+(F t,i

x) + 1;

Tf = To = Tw = ∅;
U = U+ − U−;
N+ = N− = 0;
foreach F t,i

x such that U(F t,i
x) 6= 0 do

Tf = Tf

⋃
F t,i

x ;
To = To

⋃
sgn(U(F t,i

x));
Tw = Tw

⋃
|U(F t,i

x)|;
if sgn(U(F t,i

x)) > 0 then N+ = N+ + 1
else N− = N− + 1;

foreach (to, tw) ∈ (To, Tw) do
if to > 0 then tw = tw/N+ else
tw = tw/N−;

Rj = trainWeightedRegressor(Tf , To, Tw);
Cj = Cj−1 ∗ eηjRj ;

return CK

ble of identifying small amounts of noise than he is
of preventing that noise in the first place. Even if de-
tecting and filtering out noisy demonstration is au-
tomated (as in Section 4.2), removing all imperfect

demonstration would remove a large percentage of
available training data. This would greatly increase
the amount of effort that must be expended to pro-
duce a viable training set; it may also remove example
demonstrations from which something could still have
been learned. Therefore, a practical and robust learn-
ing approach must be able to handle a reasonable
amount of error in provided demonstration without
significantly degraded performance. The rest of this
section describes modifications to the LEARCH algo-
rithm that can increase robustness and improve gen-
eralization in the face of noisy or poor expert demon-
stration.

4.2.1 Unachievable Example Behaviors

Experts do not necessarily plan their example behav-
ior in a manner consistent with a robot’s planning
system: this assumption is not part of the MMP
framework. However, what is assumed is that there
exists at least one allowable cost function that will
cause the robot’s planner to reproduce demonstrated
behavior (by scoring said behavior as the minimum
cost plan). Unfortunately, this is not always the
case: it is possible for an example to be unachiev-
able. An unachievable example is one such that no
consistent cost function, when applied to the avail-
able perceptual feature representation, will result in
the specified planning system reproducing the exam-
ple demonstration. For example, an expert may give
an inconsistently wide berth to obstacles, or make
wider turns than are necessary. Perhaps the most in-
tuitive case is if an expert turns left around a large
obstacle, when turning right would have been slightly
shorter. The result is that experts often take slightly
longer routes through similar terrain than are opti-
mal [Silver et al., 2008]; depending on planner details
(such as c-space expansion and dynamic constraints)
such examples are often unachievable.

It is instructive to observe what happens to the
functional gradient with an unachievable example.
Imagine a section of an environment where all states
are described by the identical feature vector F ′. Un-
der this scenario, (10) reduces to

∇OF ′ [C] =
{ ∑

x∈Pe
1 −

∑
x∈P∗

1 if F = F ′

0 if F 6= F ′

The functional gradient depends only on the lengths
of the example and current plan, independent of the
cost function. If the paths are not of equal length,
then the optimization will never be satisfied. Specif-
ically, if the example path is too long, there will al-
ways be an extra component of the gradient that at-

15

(a) 3 Example Training Paths (b) Learned costmap with un-
balanced weighting

(c) Learned costmap with
balanced weighting

(d) Ratio of the balanced to
unbalanced costmaps

Figure 7: The red path is an unachievable example path, as it will be less expensive under any cost function
to cut more directly across the grass. With standard unbalanced weighting (b), the unachievable example
forces down the cost of grass, and prevents the blue example from being achieved. Balanced weighting (c)
prevents this bias, and the blue example is achieved. Overall, grass is approximately 12% higher cost with
balanced than unbalanced weighting (d)

tempts to lower costs at F ′. Intuitively, an unachiev-
able example implies that the cost of certain terrain
should be 0, as this would result in any path through
that region being optimal. However, since costs are
constrained to R+, this will never be achieved. In-
stead an unachievable example will have the effect of
unnecessarily lowering costs over a large section of
the feature space, and artificially reducing dynamic
range. Depending on the expressiveness of R, an
unachievable example counteracts the constraints of
other (achievable) paths, resulting in poorer perfor-
mance and generalization (see Figure 7).

This negative effect can be avoided by performing
a slightly different regression or classification when
projecting the gradient. Instead of minimizing the
weighted error, the balanced weighted error is min-
imized; that is, both positive and negative targets
make an equal contribution. Formally, in (19) R∗ is
replaced with RB

∗ defined as

RB
∗ = arg max

R

X
t

0@ X
yt

x>0

αt
xR(F t

x)

N+
−

X
yt

x<0

αt
xR(F t

x)

N−

1A
N+ =

X
t

X
yt

x>0

αt
x = |U+|1 N− =

X
t

X
yt

x<0

αt
x = |U−|1

(20)

In the extreme unachievable case described above,
RB
∗ will be zero everywhere; the optimization will be

satisfied with the cost function as is. The effect of bal-
ancing in the general case can be observed by rewrit-
ing the regression operation in terms of the planned
and example visitation counts, and observing the cor-
relation of their inputs.

R∗ = arg max〈R,U+ − U−〉

RB
∗ = arg max〈R,

U+

N+
− U−

N−
〉

Theorem 4.1. The regression targets of R∗ and
RB
∗ are always correlated, except when the visitation

counts between the example and planned path are per-
fectly correlated.

Proof.

〈U+ − U−,
U+

N+
− U−

N−
〉

=
〈U+, U+〉

N+
− 〈U+, U−〉

N+
+
〈U−, U−〉

N−
− 〈U+, U−〉

N−

=
|U+|2

N+
+
|U−|2

N−
− (

1
N+

+
1

N−
)〈U+, U−〉 (21)

By the Cauchy-Schwarz inequality, 〈U+, U−〉 is
bounded by |U+||U−|, and is only tight against this
bound when the visitation counts are perfectly corre-
lated, which implies

〈U+, U−〉 = |U+||U−| ⇐⇒ U− = κU+

=⇒ |U−| = κ|U+| , N− = κN+

for some scalar κ. By substitution

|U+|2

N+
+
|U−|2

N−
− (

1
N+

+
1

N−
)〈U+, U−〉

≥ |U+|2

N+
+
|U−|2

N−
− (

1
N+

+
1

N−
)|U+||U−|

=
|U+|2

N+
+

κ2|U+|2

κN+
− (

1
N+

+
1

κN+
)κ|U+||U+|

=
|U+|2

N+
+

κ|U+|2

N+
− |U+|2

N+
− κ|U+|2

N+

= 0

When 〈U+, U−〉 is not tight against the upper bound

〈U+ − U−,
U+

N+
− U−

N−
〉 ≥ 0

16

By (21) the similarity between inputs to the projec-
tions is negatively correlated to the overlap of the pos-
itive and negative visitation counts. When there ex-
ists clear differentiation between what features should
have their costs increased and decreased, the projec-
tion inputs will be similar. As the example and cur-
rent planned behaviors travel over increasingly sim-
ilar terrain, the inputs being to diverge; the contri-
bution of the balanced projection to the current cost
function will level out, while that of the unbalanced
projection will increase in the direction of the longer
path. Finally, in a fully unachievable case, the bal-
anced projection will zero out, while the unbalanced
would drive the cost in the direction of the more dom-
inant class. This effect is observed empirically in Sec-
tion 5. The implementation of this balancing is shown
in Algorithm 4.

4.2.2 Noisy Demonstration: Replanning and
Corridor Constraints

A balanced regression can help to account for large
scale sub-optimality in human demonstration. How-
ever, sub-optimality can also occur at a smaller scale.
It is unreasonable to ever expect a human to drive or
demonstrate the exact perfect path; it is often the
case that a plan that travels through neighboring or
nearby states would be a slightly better example. In
some cases this example noise translates to noise in
the cost function; in more extreme cases it can signifi-
cantly affect performance (Figure 8). What is needed
is an approach that smoothes out small scale noise
in expert demonstration, producing a better training
example.

Such a smoothed example can be derived from
expert demonstration by redefining the MMP con-
straint: instead of example behavior being inter-
preted as the exact optimal behavior, it can be in-
terpreted as a behavior that is spatially near the op-
timal path. The exact definition of ’close’ depends
on the state space; the loss function will always pro-
vide at least one possible metric. If the state space
is Rn, then Euclidean distance is a natural metric.
Therefore, rather than an example defining the exact
optimal path, it would define a corridor in which the
optimal path exists.

Redefining the original MMP constraint in (4) in
this way yields

minimize O[C] = λReg[C] (22)
subject to the constraint∑

x∈P∗

(C(Fx)− Le(x)) ≥
∑

x∈P∗
e

C(Fx)

P∗ = arg min
P

∑
x∈P

(C(Fx)− Le(x))

P ∗
e = arg min

P∈Ne

∑
x inP

C(Fx)

Instead of enforcing that Pe is optimal, the new con-
straint is to enforce that P ∗

e is optimal, where P ∗
e is

the optimal path within some set of paths Ne. The
definition of Ne determines how ’close’ is defined. Us-
ing the above example of a corridor in a Euclidean
space, Ne would be defined as

Ne = {P | ∀x ∈ P ∃y ∈ Pe s.t. ||x− y|| ≤ β}

with β defining the corridor width. In the general
case, this definition can always be rewritten in terms
of the loss function

Ne = {P | ∀x ∈ P ∃y ∈ Pe s.t. L(x, y) ≤ β}

It is important to note that the definition of Ne is
only dependent on individual states. Therefore, P ∗

e

can be found by an optimal planner, simply by only
allowing traversal through states that meet the loss
threshold β with respect to some state in Pe.

Reformulating (22) as an optimization problem
yields the following objective

minimize O[C] = λReg(C)

+ min
P̂e∈Ne

 ∑
x∈P̂e

C(Fx)

− min

P̂

∑
x∈P̂

(C(Fx)− Le(x))

(23)

The resulting change in the LEARCH algorithm is to
carry through the extra minimization to the compu-
tation of the visitation counts. That is, at every iter-
ation, a new, smoothed, example is chosen from with
Ne; example visitation counts are computed with re-
spect to this path. This new step is shown in Algo-
rithm 4.

It should be noted that as a result of this addi-
tional min term, the objective is no longer convex.
It is certainly possible to produce individual exam-
ples where such a smoothing step can result in poor

17

(a) Example Paths (b) Planned Paths (No Replanning) (c) Planned Paths (With Replanning)

Figure 8: An example of how noisy demonstration can hurt performance. The red and green example paths
in (a) are slightly too close to trees, preventing the cost of the trees from increasing sufficiently to match
the red example (map (b)). However, if the paths are allowed to be replanned within a corridor, the red
and green path are essentially smoothed, allowing the cost of trees to get sufficiently high (map (c)). On
average, the trees achieve three times the cost in (c) as in (b).

local minima; however, it has been observed empiri-
cally that this effect is neutralized when using multi-
ple examples. The experimental performance of this
smoothing step is presented in Section 5.

When operating with dynamic and partially un-
known perceptual data, this replanning step provides
another important side effect. Rewriting (17) with
this additional min term yields

minimize O[C] = λReg(C) (24)

+
X

t

min
P̂ t

e∈N t
e

0@ X
x∈P̂ t

e∩Vt

C(F t
x) +

X
x∈P̂ t

e∩V̄t

CV̄(x)

1A
−

X
t

min
P̂ t

0@ X
x∈P̂ t∩Vt

(C(F t
x)− Lt

e(x)) +
X

x∈P̂ t∩V̄t

CV̄(x)

1A
Where N t

e is the set of paths near P t
e . However, as

before it should be noted that the CV̄ terms will have
no affect on the functional gradient. Therefore, the
definition of N t

e does not need to consider states in
V̄. This yields the following general definition of N t

e

N t
e = {P t | ∀x ∈ P t

⋂
Vt ∃y ∈ P t

e

⋂
Vt

s.t. L(x, y) ≤ β}

the result is that N t
e only defines closeness over Vt.

Behavior outside of Vt does not directly affect the
gradient, but does affect the objective value (the dif-
ference in cost between the current (replanned) exam-
ple and planned behavior). Therefore, by performing
a replanning step (even with β = 0), example be-
havior can be made consistent with CV̄ without com-
promising its effectiveness as an example within Vt.
This notion of consistency proves to have meaningful
value.

Figure 9: Recorded example behavior from time t
(left) and t + 1 (right), overlayed on a single per-
ceptual feature (obstacle height). Future behavior is
inconsistent at time t, but makes sense at time t + 1
given additional perceptual data.

4.2.3 Filtering for Inconsistent Examples

One fundamental issue with expert demonstration is
consistency. A human demonstrator may act approx-
imately according to one metric during one example,
and a slightly different metric during another exam-
ple. While each individual example may be near-
optimal with respect to some metric, the two exam-
ples together may be inconsistent; that is, there is
no consistent cost function that would define both
behaviors as optimal.

The possibility of an expert interpreting unknown
terrain in a different manner is a potentially large
source of inconsistency. This is especially true when
attempting to learn an online cost function, as it is
very likely that the demonstrator will have implicit
prior knowledge of the environment that is unavail-
able to the perception system. However, by always
performing a replanning step as previously discussed,
example demonstration can be made consistent with

18

the robot’s interpretation of the environment in un-
observed regions.

With consistency in unobserved regions accounted
for, there remain four primary sources of inconsistent
demonstration

• Inconsistency between multiple experts

• Expert error (poor demonstration)

• Inconsistency between an expert’s and the
robot’s perception in observed regions

• A mismatch between an expert’s planned and
actual behavior

This last issue was alluded to in Section 4.1: while
an expert example should consist of an expert’s plan
at time t from the current state to the goal, what is
recorded is the expert’s behavior from time t to the
goal. Figure 9 provides a simple example of this mis-
match: at time t, the expert likely planned to drive
straight, but was forced to replan at time t + 1 when
the cul-de-sac was observed. This breaks the assump-
tion that the expert behavior from time t onward
matches the expert plan; the result is that the dis-
cretized example at time t is inconsistent with other
example timesteps.

However, the very inconsistency of such timesteps
provides a basis for their filtering and removal.
Specifically, it can be assumed that a human expert
will plan in a fairly consistent manner during a sin-
gle example traverse7. If the behavior from a single
timestep or small set of timesteps is inconsistent with
the demonstrated behavior at other timesteps, then
it is safe to assume that this small set of timesteps
does not demonstrate correct behavior, and can be
filtered out and removed as training examples. This
does not significantly affect the amount of training
data required to train a full system., as by definition
an inconsistent timestep is unlikely to provide an ex-
ample of an important concept.

Inconsistency can be quantitatively defined by ob-
serving each timestep’s contribution to the objective
functional (its slack penalty). In (5) this penalty is
explicitly defined as a a measurement of by how much
a constraint remains violated. If the penalty at a sin-
gle timestep of an example behavior is a statistical
outlier from the distribution of slack penalties at all
other timesteps, it indicates that single timestep im-
plies constraints that remain violated far more than
others. That is, the constraints at an outlier timestep
are inconsistent with those implied by the rest of a
demonstration.

7If this assumption does not hold, then the very idea of
learning from said expert’s demonstration is flawed

Therefore, the following filtering heuristic is pro-
posed as a pre-processing step. First, attempt to
learn a cost function over all timesteps of a single
example behavior and identify statistical outliers (ac-
cording to slack penalties). During this step, a more
complex hypothesis space of cost functions should
be used than is intended for the final cost function
(i.e use more complex regressors). As these outlier
timesteps are inconsistent within an overly complex
hypothesis space, there is evidence that the incon-
sistency is in the example itself, and not for lack of
expressiveness in the cost function. Therefore, these
timesteps should be removed. This process can be
repeated for each example behavior, with only re-
maining timesteps used in the final training.

Aside from filtering out inconsistency due to
plan/behavior mismatch, this approach will also fil-
ter timesteps due to other sources of inconsistency.
This is beneficial, as long as the timesteps truly are
inconsistent. However, the possibility always remains
that the example itself was correct; it may only ap-
pear inconsistent due to the fidelity of perception or
planning. In this case, filtering is still beneficial, as
the examples would not have been learnable (with
the current set of perceptual features and the current
planning system); instead, the small subset of filtered
examples can be examined by a system expert, who
may then identify a necessary additional component
level capability. Experimental results of this filtering
approach are presented in Section 5.

4.3 Application to Mobile Robotic
Systems

Before LEARCH (in either its static or dynamic
forms) can be applied to the task of learning a ter-
rain cost function for a mobile robotic system, there
are still some practical considerations to address. It
is important to remember the specific task for which
LEARCH is intended: it is designed to select a cost
function from a defined hypothesis space C , such that
expert demonstration is recreated when the cost func-
tion is applied to the specific perception and planning
systems for which it was trained. There are several
hidden challenges in that statement, such as defining
C, and ensuring LEARCH is producing a cost func-
tion for the correct planning system.

4.3.1 Selecting a Cost Function Hypothesis
Space

The cost function hypothesis space C is implicitly de-
fined by the regressor space R. In turn, R is defined
by design choices relating to the family and allowable

19

Figure 10: Example of a new feature (right) learned
automatically from panchromatic imagery (left) using
only expert demonstration (there are no explicit class
labels).

complexity of regressors. For example, if single layer
neural networks with at most H hidden are chosen
as the class of regressors, than C consists of all cost
functions that are a weighted sum of such networks.
In this way, cost functions of almost arbitrary com-
plexity can be allowed.

However, as with most machine learning tech-
niques, there is a design tradeoff between expressive-
ness and generalization. Complex regressors are ca-
pable of expressing complex costing rules, but are
more prone to overfitting. In contrast, simpler re-
gressors may generalize better, but are also limited
in the costing rules they can express. This tradeoff
must be effectively balanced to ensure both sufficient
expressiveness and generalization. Fortunately, as re-
gression is a core machine learning task, there are well
developed and understood approaches for achieving
this balance. In practice, validation with an inde-
pendent holdout set of demonstrated behaviors can
help quantify this tradeoff. This allows a range of
regressor types and complexities to be automatically
evaluated; the one with the best holdout performance
can be selected with minimal additional human inter-
action.

Another issue with respect to the definition of C is
computational cost. In a scenario where perceptual
features are static, this concern is not as important,
as cost evaluations are only performed once. How-
ever, in an online and dynamic setting, cost eval-
uations are performed continuously; computational
complexity may be a much larger issue. As the final
learned cost function is a weighted combination of K
regressors, computational complexity of the final cost
function is linear in K. Again, this creates a design
tradeoff; limiting K will limit the computational cost
per evaluation, but will also limit the accuracy of the

cost function (as the final steps of a gradient descent
operation fine tune the solution).

One solution is to define R as the space of linear
functions. Since the weighted sum of linear func-
tions is another linear function, using this defini-
tion of R would result in the final complexity of
CK being constant with respect to K. However us-
ing linear regressors with LEARCH results in almost
the same solution as would be produced by the lin-
ear MMP algorithm (but not identical due to expo-
nentiated functional gradient descent). As the fun-
damental advantage of the LEARCH approach was
to allow non-linear cost functions, this would seem
to imply a necessary tradeoff. However, the addi-
tion of a feature learning phase [Ratliff et al., 2007,
Silver et al., 2008, Silver et al., 2009a] to LEARCH
can potentially solve this problem. During most
learning iterations, linear regressors are used. How-
ever, when it is detected that the objective error is no
longer decreasing, a single, simple non-linear regres-
sion is performed. This single, non-linear step would
better discriminate between terrains that are difficult
for a purely linear regressor. However, rather than
add this new regressor directly into the cost func-
tion, it is instead treated as a new feature. Figure 10
provides a simple example of a learned feature with
only greyscale imagery as input.

4.3.2 Planner Interpretation of Cost Maps

A common approach in mobile robotics is to treat the
environment as a 2.5D space; this allows the state
space S for high level path planning to be R2. This
results in terrain costs defined over a a discretized
2D grid. However, different planning systems may
interpret a 2D cost grid differently. Since the goal is
to learn a cost function to recreate behavior with a
specific planning system, these details must be taken
into account to learn the cost function correctly.

Perhaps the simplest cost-aware planner one might
use for a mobile robot would be 4-connected A* (or
other grid planner). Such a planning system would
incur a cost of C(x) whenever a cell x was traversed.
Now consider the case of an 8-connected A*. Many
8-connected implementations treat traversing a cell
diagonally as higher cost than traversing the same
cell axis-aligned; this allows the planner to take into
account the extra distance traversed through a grid.
This usually takes the form of incurring a cost of C(x)
when traversing the cell axis-aligned, and a cost of√

2C(x) when traversing the cell diagonally.
Since cells traversed diagonally incur more cost,

this must be taken into account by LEARCH when
computing the projection of the functional gradient.

20

With respect to the final cost of a path, a cell tra-
versed diagonally will have a

√
2 greater affect than

one traversed axis-aligned; therefore it is
√

2 times
more important to get the sign right on the projec-
tion. The solution is to increment the visitation count
of a cell by 1 when traversing it axis-aligned, and by√

2 when traversing diagonally. In the general case,
a planner may incur a cost of dC(x) when traversing
a distance d through cell x; the visitation count of
state x should then be incremented by d.

Another issue that must be considered is that of
configuration space expansion. Motion planners for
mobile robotic systems often apply a c-space expan-
sion to an input cost map before generating a plan,
in order to account for the physical dimensions of the
robot. The result is that the cost the planner assigns
for traversing distance d through state x is no longer
dC(x), but rather something along the lines of

d
∑
y∈N

W (x, y)C(y) (25)

where N is a set of states sufficiently close to x, and
W is a weighting function. Common choices for W in-
clude a constant, or a linear falloff based on ||x− y||.
As before, this weighting must be captured by the
visitation counts: if distance d is traversed through
cell x, then all cells y ∈ N must have there visitation
counts incremented by dW (x, y). A further compli-
cation arises if W depends not only on the locations
of x and y, but also their (or other states) cost values.
For instance, if a c-space expansion defined the cost
of traversing d through state x as

d max
y∈N

C(y)

then only the state y with the maximum cost in N
should have its visitation count incremented by d; all
other states would not affect the planner perceived
cost of traversing x under the current C. Unlike (25),
this form results in non-convexity in the LEARCH
algorithm (in addition to non-convexity from replan-
ning), as different initial cost functions C0 may pro-
duce significantly different results.

4.3.3 Planners with Motion Constraints

A common architecture for mobile robot planning
systems is to utilize a hierarchy of planners, rang-
ing from long-range low resolution planners to short-
range high resolution planners. The simplest form
of this architecture utilizes a long-range, uncon-
strained ’global’ planner, and a short-range, kine-
matically or dynamically constrained ’local’ planner

[Kelly et al., 2006, Stentz et al., 2007]. Usually, a lo-
cal planner does not plan all the way to the goal; in-
stead it produces a set of feasible short-range actions,
and utilizes the global planner to produce a path from
the end of the action to the goal. Local planner gen-
erated plans are not actually followed to completion,
but instead are replanned at a high rate. In this way,
the local planner is not actually optimal, but instead
performs something akin to a greedy search.

If LEARCH is to be used for an onboard percep-
tion system, it is important that they be learned with
respect to the planning system that will be used on-
board the robot. If a hybrid architecture is used,
LEARCH must therefore be implemented using the
same configuration. It is important that the decisions
the planner is tasked with making during training are
exactly those that will be required during operation.
For example, in the case of a greedy local planning
system, P t

∗ at each iteration should be the direct out-
put of the planning system, not the concatenation of
multiple planning cycles (even though this is how the
robot’s behavior is determined online). This is nec-
essary for credit assignment; if at time t the expert
swerved to avoid an obstacle, then not only must the
cost of the obstacle be sufficiently high, but the cost
of the terrain swerved over must be sufficiently low.
Even if subsequent actions reduce the distance trav-
eled during the swerve, the planner must be willing
to perform a large turn at time t to begin that ma-
neuver.

Related to this issue is one of planner fidelity. De-
pending on discretization resolution and the level of
vehicle modeling, it is unlikely that a kinematically or
dynamically constrained planning system will be able
to exactly recreate the same behavior as executed
during demonstration. Inability to recreate demon-
strated behavior can introduce noise into the learned
cost function, of magnitude proportional to the de-
gree of mismatch. Possible solutions for this issue
are discussed in the next two sections.

5 Experimental Results

Learning cost functions by demonstration was applied
to the Crusher autonomous system (Figure 1). The
Crusher vehicle is capable of traversing rough, com-
plex, and unstructured terrain; as such understanding
the relative benefits and tradeoffs of various terrain
types is of paramount importance to its autonomous
operation. On Crusher, terrain data comes from two
primary sources. The first is prior, static, overhead
data sources (satellite or aerial imagery, aerial Li-
DAR, etc.). Overhead data is processed via a set

21

Figure 11: A high level block diagram of the Crusher
Autonomy system

of engineered feature extractors into a set of feature
maps, which are then mapped into a single, static
costmap for an entire area of operation. The sec-
ond source of terrain data comes from the onboard
perception system. The onboard perception system
processes local data from onboard camera images and
LiDAR into a dynamic stream of features. At a high
data rate, these features are continuously mapped to
costmaps over a local area.

Costs from both sources are continuously fused into
a single consistent costmap, which is then passed
to Crusher’s motion planning system. Fusing prior
and onboard perceptual data at the cost level al-
lows for Crusher to continuously plan a path all
the way from its current position to the goal. Due
to the dynamic nature of this cost data, the Field
D* algorithm is utilized [Ferguson and Stentz, 2006].
In order to determine feasible local motion com-
mands for Crusher, a variant of the RANGER sys-
tem [Kelly, 1995, Kelly et al., 2006] is applied, uti-
lizing the Field D* plan for global guidance. This
architecture is shown is Figure 11.

Early in Crusher’s development, the task of in-
terpreting both static and dynamic perceptual data
into costs was performed through manual engineer-
ing, and was a large source of frustration. This led
to the application of learning by demonstration to
constructing cost functions. This was first applied in
the static perceptual case (overhead data) utilizing
the Field D* planner, and was next applied to the
dynamic case (onboard perceptual data) utilizing the
Field D* guided RANGER local planner. The re-
mainder of this section describes these experiments,
along with offline results from each task.

Two metrics are used for evaluating offline perfor-
mance. The first is the average loss along a path. As
the loss function is constructed to encode the similar-
ity between two paths, the loss between an example
path and the corresponding planned path (over the
interval [0,1]) is a measure of how accurately expert
behavior has been reproduced. A second measure
is the cost ratio, defined as the cost of an example
path divided by the cost of the corresponding planned
path. As this ratio approaches 1, it indicates the cur-

(a) Simulated Examples

(b) Expert Drawn Examples

Figure 12: Learning simulated and expert drawn ex-
ample paths. Test set performance is shown as a func-
tion of number of input paths

rent cost function hypothesis is approaching consis-
tency with the expert demonstration. The cost ratio
as opposed to cost difference is used to account for
the affect of scaling on the cost function (with the
cost difference, simply scaling the costs closer to zero
would improve the metric, without improving the rel-
ative cost difference).

5.1 Learning to Interpret Overhead
Data

In order to verify LEARCH under ideal conditions,
tests were first run on simulated examples. A known
(arbitrary) cost function was used to generate a cost
map over a single environment from its overhead fea-
tures; this cost map was used to produce paths be-
tween random waypoints. Different numbers of these
paths were then used as input for LEARCH, and the
performance measured on a large independent vali-

22

0 5 10 15
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Corridor Size (in cells)

V
al

id
at

io
n

Lo
ss

Figure 13: Validation loss as a function of the corri-
dor size. Using corridor constraints improves perfor-
mance as long as the corridor is not too large

dation set of paths (generated in the same manner).
Figure 12(a) shows the results using both the

balanced and standard weighting schemes (Section
4.2.1). As the number of training paths is increased,
the test set performance continues to improve. Each
input path further constrains the space of possible
cost functions, bringing the learned function closer
to the desired one. However, there are diminishing
returns as additional paths overlap to some degree
in their constraints. Finally, the performance of the
balanced and standard weighting schemes is similar.
Since all paths for this experiment were generated by
a planner, they are by definition optimal under some
metric, and therefore both achievable and consistent
with each other.

Next, experiments were performed with expert ex-
amples (both training and validation) drawn on top of
overhead data maps. Figure 12(b) shows the results
of an experiment of the same form as that performed
with simulated examples. Again, the validation set
cost ratio decreases as the number of training exam-
ples increases. However, with real examples there
is a significant difference between the two weight-
ing schemes; the balanced weighting scheme achieved
significantly better performance. This demonstrates
both how human demonstration can suffer from large
scale non-optimality, and how LEARCH can be made
robust to this fact through a balanced regression.

Another series of experiments were performed to
determine the effect of performing replanning with
corridor constraints (Section 4.2.2). For these ex-
periments, the performance of learning was measured
with validation loss, to indicate how well the planned
paths matched the examples. When measuring loss
on the validation set, no replanning was performed.

Therefore, in order to provide a smoother metric, the
specific loss function used was a radial basis function
between states on the current path P∗ and the closest
state on the example Pe, with a scale parameter σ2

L(P∗, Pe) =
1
|P∗|

∑
x∈P∗

[1− exp (min
xi∈Pe

[‖x− xi‖2]/σ2)]

Using a loss function of this form provides a more ana-
log metric than a Hamming style loss as previously
described. Figure 13 shows the results on the valida-
tion set as a function of the corridor size (in cells).
Small corridors provide an improvement over no cor-
ridor, demonstrating how small scale smoothing can
improve generalization. However, as the corridor gets
too large, this improvement disappears; large corri-
dors essentially over-smooth the examples and begin
to miss critical information.

Finally, experiments were performed in order to
compare the offline performance of learned costmaps
with engineered ones. A cost map was trained off of
satellite imagery for an approximately 60 km2 size
environment. An engineered costmap had been pre-
viously produced for this same test site to support
Crusher operations. This engineered map was pro-
duced by performing a supervised classification of the
imagery, and then manually determining a cost for
each class [Silver et al., 2006]. A subset of both maps
is shown in Figure 15. The two maps were compared
using a validation set of paths generated by a Crusher
team member not directly involved in the develop-
ment of overhead costing. The average validation loss
using the LEARCH map was 23% less than the engi-
neered map (Figure 14), thus demonstrating superior
generalization of the learned approach.

Online validation of the learned costmaps was also
achieved during Crusher field tests. These tests con-
sisted of Crusher autonomously navigating a series of
courses, with each course defined as a set of widely
spaced waypoints. Courses ranged in length up to
20 km, with waypoint spacing on the order of 200 to
1000 m. These tests took place at numerous locations
across the continental U.S., each with highly varying
local terrain characteristics, and sizes ranging from
tens to hundreds of square kilometers.

During 2005 and 2006, prior maps were primarily
generated as described in [Silver et al., 2006]. An ini-
tial implementation of the LEARCH algorithm was
also field tested and demonstrated in smaller tests
during 2006. During 2007 and 2008, LEARCH be-
came the default approach for producing cost maps.
Overall, LEARCH maps were used during more than
600 km of sponsor monitored autonomous traverse,
plus hundreds of kilometers more of additional field

23

Experiment Total Net Avg. Total Cost Max Cost
Distance(km) Speed(m/s) Incurred Incurred

Experiment 1 6.63 2.59 11108 23.6
Learned
Experiment 1 6.49 2.38 14385 264.5
Engineered
Experiment 2 6.01 2.32 17942 100.2
Learned
Experiment 2 5.81 2.23 21220 517.9
Engineered
Experiment 2 6.19 1.65 26693 224.9
No Prior

Table 1: Results of experiments comparing learned to engineered prior maps. Indicated costs are from the
vehicle’s onboard perception system.

Engineered Learned
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
al

id
at

io
n

Lo
ss

Figure 14: Performance comparison between a
learned and engineered prior costmap. The learned
map produced behavior that better matched an in-
dependent validation set of examples.

testing. This demonstrates that a learned cost func-
tion was sufficient for use online a complex robotic
system.

In addition, two direct online comparisons were
performed. These two tests were performed several
months apart, at different test sites. During each
experiment, the same course was run twice, vary-
ing only the prior cost map given to the vehicle be-
tween runs. The purpose of these experiments was
to demonstrate that learning a cost function not only
generalized better with respect to initial route plan-
ning, but also with respect to dynamic replanning
online.

Each run was scored according to the total cost

incurred by the vehicle according to its onboard per-
ception system. At the time of these experiments, the
perception system made use of a manually engineered
cost function. However, this function was shown
through numerous experiments [Stentz et al., 2007]
to result in a high level of autonomous performance;
therefore it is a valid metric for scoring the safety of
a single autonomous run.

The results of these experiments are shown in Ta-
ble 1. In both experiments, the vehicle traveled far-
ther to complete the same course using learned prior
data, and yet incurred less total (online) cost. Over
both experiments, with each waypoint to waypoint
section considered an independent trial, the improve-
ment in average cost and average speed is statisti-
cally significant at the 5% and 10% levels, respec-
tively. This indicates that the terrain the vehicle tra-
versed was on average safer when using the learned
prior map, according to its own onboard perception
system. This normalization by distance traveled is
necessary because the learned prior and engineered
perception cost functions do not necessarily agree in
what they consider unit cost. Additionally, the max-
imum cost incurred at any point along an experiment
is also provided; for both terrains, the maximum is
significantly lower when using the learned prior data.
The course for Experiment 2 was also run without
any prior data; the results are presented for compar-
ison.

In addition to improving vehicle performance, us-
ing learned cost functions also reduced the necessary
amount of human interaction. When preparing for a
Crusher test using engineered costmaps, performing
a supervised classification and tuning the cost func-
tion would take on the order of 1-2 days. In contrast,
when using learned costmaps drawing example paths

24

Figure 15: A 10 km2 section of a Crusher test site.
From top to bottom: Quickbird imagery, Learned
Cost, and Engineered Cost

would require on the order of 1-2 hours8. In a timed
head-to-head experiment on a 2 km2 test site, pro-
ducing a supervised classification required 40 minutes
of expert involvement, and tuning a cost function re-
quired an additional 20 minutes. In contrast, produc-
ing example paths required only 12 minutes. On this
same experiment, the learned costmap had a valida-
tion loss of 0.43, compared to 0.56 for the engineered
map. This demonstrates that the learned approach

8Neither of these timings include the necessary effort to
process raw overhead data into feature maps, as this process
is a shared precursor to both approaches to costing

Engineered
Learned (w/class)

Learned(wo/class)

0

10

20

30

40

50

60

70

0

0.1

0.2

0.3

0.4

0.5

0.6

Loss
Time

T
im

e
(m

in
ut

es
)

V
al

id
at

io
n

Lo
ss

Figure 16: Performance comparison between 3 ap-
proaches to generating prior costmaps. LEARCH not
only performs better and faster at the task of deter-
mining costs of different semantic classes, it also does
a better job at interpreting raw data (for the purpose
of costing) than semantic classification.

produced superior performance, with less human in-
teraction time (Figure 16).

An additional test was performed in which the
same training set of example paths was used to learn
a cost function only from the results of the supervised
classification; in this case the learned map had a vali-
dation loss of 0.52. This demonstrates two important
points. The first is that even when the problem of
learning a cost function was reduced to solely a low
dimensional parameter tuning problem (in this case
5 dimensions), the automated approach was able to
perform better than manual tuning, and with less
human interaction. The second point is that reduc-
ing the task to a lower dimensional problem (labeling
for the supervised classification) required additional
interaction, and that this feature space compression
resulted in a loss of useful information (as the val-
idation loss was better when learning from the full
feature space as opposed to the compressed one).

5.2 Learning to Interpret Online Per-
ceptual Data

Next, dynamic LEARCH was applied to the task of
learning a cost function for Crusher’s onboard percep-
tion system (Figure 17). Training data in the form
of expert example behaviors was gathered by having
Crusher’s safety operator RC the vehicle through sets
of waypoints. Different training examples were col-
lected over a period of months in varying locations
and weather conditions, and with 3 different oper-
ators at one time or another. During data collec-

25

0 20 40 60 80 100 120 140 160 180 200
0.55

0.6

0.65

0.7

0.75

0.8

iteration

va
lid

at
io

n
lo

ss

unbalanced
balanced

0 20 40 60 80 100 120 140 160 180
0.588

0.59

0.592

0.594

0.596

0.598

0.6

0.602

0.604

corridor size in cm

va
lid

at
io

n
lo

ss

0 1 2 3 4 5 6 7 8 9

0.57

0.575

0.58

0.585

0.59

0.595

0.6

0.605

0.61

Number of Regression Trees

va
lid

at
io

n
lo

ss

Figure 18: Results of offline experiments on logged perception data. Left: Validation Loss during learning
for the balanced and standard weighting Center: Validation Loss as a function of the replanning corridor
size Right: Validation Loss as a function of the number of regression trees.

tion, all raw sensor data was logged along with the
example path. Perceptual features were then pro-
duced offline by feeding the raw sensor data through
Crusher’s perception software. In this way, the base
perception system and its features could be modified
and improved without having to recollect new train-
ing data; the raw data is just reprocessed, and a cost
function learned for the new features.

This set of examples was first used to perform a
series of offline experiments to validate the dynamic
extension of LEARCH. Loss on a validation set was
used as the metric, to measure how well planned be-
havior recreated example behavior. These results are
presented in Figure 18. The left graph again demon-
strates the effectiveness of performing balanced as op-
posed to unbalanced regression, as the balanced ver-
sion has superior validation performance. The center
graph further demonstrates the utility of replanning
with corridor constraints. With a small corridor size,
the algorithm is able to smooth out some of the noise
in example human behavior, and improve generaliza-
tion. As the corridor size increases, the algorithm
begins to over-smooth, resulting in decreasing valida-
tion performance. This also demonstrated how vali-
dation data can be used to automatically determine
the optimal corridor size.

An experiment was also performed to assess the ef-
fectiveness of filtering out inconsistent timesteps. A
single expert behavior was used to learn a cost func-
tion, first with no filtering, and then with approx-
imately 10% of its timesteps automatically filtered.
As would be expected, the performance of the re-
maining 90% of the training set improved after filter-
ing (Figure 19). However, performance on the vali-
dation set also improved slightly. This demonstrates
that filtering out inconsistent timesteps non only im-
proves performance on examples for which the filtered
timesteps were inconsistent, it also improves general-

ization to unseen examples.
As cost evaluations in an onboard perception sys-

tem must be performed in real time, the computa-
tional cost of an evaluation is an important consid-
eration. As described in (Section 4.3.1), using only
linear regressors is beneficial from a computational
standpoint, and feature learning can be used to im-
prove the complexity of the cost function if necessary.
Figure 18 (Right) shows validation loss as a function
of the number of added features learned using simple
regression trees. At first, additional features improves
the validation performance; however, eventually too
many features can cause overfitting.

Next, the collected training set was used to learn
a cost function to run onboard Crusher. Originally,
Crusher used an engineered perception cost func-
tion. During more than 3 years of Crusher develop-
ment, this cost function was continually redesigned
and retuned, culminating in a high performance sys-
tem [Stentz et al., 2007]. However, this performance
came at a high cost of human effort. Version con-
trol logs indicate that 145 changes were made to just
the structure of the model mapping perceptual fea-
tures to costs; additionally more than 300 parameter
changes were checked in (untold more were tried at
one point or another, requiring verification on logged
data or actual vehicle performance). As each com-
mitted change requires significant time to design, im-
plement, and validate, easily hundreds of hours were
spent on engineering the cost function. In contrast,
the time to collect the final training set for learning
by demonstration required only a few hours of hu-
man time (spread over several months). This seem-
ingly small amount of human demonstration is suf-
ficient due to the numerous constraints implied by
each example behavior: the approximately 3 kilome-
ters of demonstration provides hundreds of thousands
of examples of states to traverse, and millions more

26

(a) Left Camera Image (b) Right Camera Image

(c) Max Object Height (d) Density in Wheel Re-
gion

(e) Density in Hull Region (f) Density above Vehicle

(g) Solid Classification (h) Learned Cost

Figure 17: An example of learned perception cost
from a simple scene, depicted in (a),(b). Processing
of raw data results in perceptual features (a subset of
which are shown in (c) - (g)) that are mapped into
cost (h) by a learned function.

Training Loss Validation Loss
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

With Filtering
No Filtering

Figure 19: Comparison of performance with and
without filtering. Filtering out inconsistent timesteps
improves performance on both training example
which were inconsistent with the filtered examples,
as well as on an independent validation set.

examples of states that were avoided.
Crusher’s perception system actually consists of

two modules: a local perception system that pro-
duces high resolution cost data out to 20m, and a
far range perception system that produces medium
resolution cost data out to 60m. The far range
system utilizes near-to-far learning as described in
[Sofman et al., 2006] for learning a far range cost
function from near range cost data. Therefore, when
the system learns online from scratch, the near range
cost function implicitly defines the far range cost
function. For this reason, learning by demonstra-
tion was only used to learn the near range function;
the far range function would automatically adapt to
whatever near range function was utilized.

As Crusher utilizes a hybrid local/global plan-
ning architecture, it was necessary to learn a cost
function with respect to the lowest level of motion
planning (see Section 4.3.3); otherwise the learned
cost function would not actually recreate demon-
strated behaviors when applied online. However,
the local planner suffers from low fidelity; while
the concatenation of multiple planning cycles can
produce behavior of surprising complexity, indi-
vidual planning cycles consider only a relatively
small subset of possible actions. This approach
has proven quite effective on Crusher, as well as in
previous off road mobile systems [Singh et al., 2000,
Kelly et al., 2006, Biesiadecki and Maimone, 2006,
Carsten et al., 2009]. Unfortunately, as previously
stated this inability for the planner to recreate
demonstrated behavior in a single planning cycle can

27

produce noise in a learned cost function.
If there were some way to map a demonstrated be-

havior to the appropriate planner action at each cy-
cle, then the selection of that action could serve as the
proper termination condition. Unfortunately, collect-
ing this information during demonstration by an ex-
pert would be extremely tedious, requiring an expert
selection at every planning cycle. Instead, a heuristic
approach to approximating this decision was imple-
mented [Silver et al., 2009a]. Essentially, this tech-
nique seeks to project the expert’s example behavior
onto the space of possible planner actions. This was
performed by first learning a perception cost func-
tion for Crusher’s global planner (as this planner is
not kinematically constrained, it can better repro-
duce demonstrated paths). Such a cost function will
generally underestimate the cost necessary for the
equivalent kinematically constrained planner. There-
fore, each potential constrained planner plan is scored
by its average cost instead of total cost. A plan with
low average cost can not be said to be optimal, but it
traverses desirable(low cost) terrain. An additional
penalty based on path length is added to bias scores
towards those that make progress towards the goal9.
After scoring each action, that with the lowest score
is used as the new example. The result of this initial
replanning step is to produce a new example that is
feasible to the local planner.

The performance of different perception cost func-
tions was compared through more than 150 km of
comparison trials. The final results comparing 4 dif-
ferent cost functions are presented in Table 2. In
addition to the engineered cost function, 3 learned
cost functions were compared: one using the global
planner, one using the local planner, and one using
the local planner with the initial heuristic replanning.
Unfortunately, as the cost function itself is the vari-
able being tested, cost can not be used as a metric
for comparing the relative safety of each systems be-
havior. Therefore, various proprioceptive statistics
were recorded to offer an approximate quantitative
description of safety. The number of safety related
e-stops was also recorded. The statistics for each
learned system were then compared on a waypoint
by waypoint basis to the engineered system, to test
for statistical significance. While it is not possible to
convert these numbers into a single quantitative met-
ric for comparison10, it is possible to make a broad
relative comparison between systems by observing in-

9the weight of this penalty can be automatically tuned by
optimizing performance on a validation set, preventing any
hand tuning

10doing so would require a manually tuned and essentially
arbitrary weighting, the very problem this work seeks a solu-
tion to

dividual statistics.
In comparison to the engineered system, the cost

function learned for the global planner resulted in
overly aggressive performance. As discussed in Sec-
tion 4.3.3, learning in this manner does not result in
sufficiently high costs for Crusher to avoid obstacles
online. The empirical result is that Crusher drives
faster, turns less, and backs up less, while suffering
from increased mobility risk (in the form of twice the
rate of safety e-stops). In contrast, the cost func-
tion learned for the local planner resulted in perfor-
mance very similar to that of the already high perfor-
mance engineered system; The only significant differ-
ence was the learned system turned slightly less (as
indicated by lower average angular velocity and lat-
eral speed/acceleration).

Adding an initial heuristic replanning step to learn-
ing a cost function for the local planner resulted
in a system that also maintained a seemingly equal
level of safety to the engineered system; the differ-
ence in safety e-stops was not statistically significant,
but there was a significant decrease in the wear on
Crusher in the form of lower motor current draw and
less suspension travel. However, this equal safety was
achieved with seemingly more aggressiveness than the
engineered cost function. This is indicated by a sta-
tistically significant decrease not only in angular ve-
locity and lateral movement, but also in the amount
of backing up, with a significant increase in average
speed. The effect of the initial replanning stage is
to reduce noise in the cost function; the reduction of
this noise allows the vehicle to alter its behavior less
in the face of false positive high cost regions, while
still avoiding true obstacles. The overall result is a
slight performance improvement, achieved with or-
ders of magnitude less human effort.

6 Conclusion

This paper addresses the task of interpreting per-
ceptual data for use in autonomous navigation. We
have shown the applicability of learning from ex-
pert demonstration towards improving the robustness
of autonomous navigation systems, while helping to
minimize the necessary amount of expert interaction.
Specifically, the parameter tuning problem that often
results from the coupling of complex perception and
planning systems can be automated through expert
demonstration instead of expert intervention. This
automated approach not only reduces development
and validation time, but can produce a more efficient
and robust system than manual approaches.

Most importantly, this approach provides a formal-

28

System Avg Dist Avg Cmd Avg Cmd Avg Lat Dir Switch Avg Motor
Made Good (m) Vel (m/s) Ang Vel.(◦/s) Vel (m/s) Per m Current (A)

Engineered 130.7 3.24 6.56 0.181 0.107 7.53

Global 123.8* 3.34* 4.96* 0.170* 0.081* 7.11*

Local 127.3 3.28 5.93* 0.172* 0.100 7.35

Local w/replan 124.3* 3.39* 5.08* 0.170* 0.082* 7.02*

System Avg Avg Avg Vert Avg Lat Susp Safety
Roll(◦) Pitch(◦) Accel (m/s2) Accel (m/s2) Max∆ (m) E-stops

Engineered 4.06 2.21 0.696 0.997 0.239 0.027

Global 4.02 2.22 0.710* 0.966* 0.237 0.054*

Local 4.06 2.22 0.699 0.969* 0.237 0.034

Local w/replan 3.90* 2.18 0.706* 0.966* 0.234* 0.030

Table 2: Averages over 295 different waypoint to waypoint trials per perception system, totaling over 150km
of traverse. Statistically significant differences (from Engineered) denoted by *

ism for how a cost function should be defined; it is the
simplest function that meets constraints implied by
example behavior. As opposed to a hand tuned ap-
proach (which can easily overfit) this simplicity pro-
vides a theoretical basis for achieving robustness and
generalization. Further, this approach naturally re-
sults in an automated framework for both initial and
continuing cost function validation.

Future work will explore the application of this ap-
proach to learning cost functions over full state-action
pairs. The behavior of an autonomous navigation
system is defined not only by which terrain it prefers,
but by which motions it prefers (e.g. minimum cur-
vature). Improper modeling of these preferences is
just as significant a detriment to robot performance
as improper modeling of terrain preferences; it also
contributes to the inability of some planning systems
to properly recreate demonstrated behavior. Previ-
ous work [Abbeel et al., 2008] has briefly investigated
this challenge independently of the equivalent percep-
tion problem. However, by learning all preferences
at once from human demonstration, we hope to fur-
ther improve the robustness of autonomous naviga-
tion, while further reducing the effort involved in de-
ployment and validation of such systems.

Acknowledgments

This work was sponsored by DARPA under contract
“Unmanned Ground Combat Vehicle - PerceptOR
Integration” (contract MDA972-01-9-0005) and by
the U.S. Army Research Laboratory under contract
“Robotics Collaborative Technology Alliance” (con-
tract DAAD19-01-2-0012). The views and conclu-
sions contained in this document are those of the au-
thors and should not be interpreted as representing

the official policies, either expressed or implied, of the
U.S. Government. Additionally, the authors would
like to thank the many members of the Crusher ve-
hicle and autonomy teams who made this work pos-
sible.

References

[Abbeel et al., 2008] Abbeel, P., Dolgov, D., Ng,
A. Y., and Thrun, S. (2008). Apprenticeship learn-
ing for motion planning with application to park-
ing lot navigation. In International Conference on
Intelligent Robots and Systems.

[Abbeel and Ng, 2004] Abbeel, P. and Ng, A. Y.
(2004). Apprenticeship learning via inverse rein-
forcement learning. In International Conference
on Machine learning.

[Angelova et al., 2007] Angelova, A., Matthies, L.,
Helmick, D., and Perona, P. (2007). Learning and
prediction of slip from visual information. Journal
of Field Robotics, 24(3):205–231.

[Bagnell et al., 2010] Bagnell, J., Bradley, D., Silver,
D., Sofman, B., and Stentz, A. (2010). Learn-
ing rough-terrain autonomous navigation. IEEE
Robotics and Automation Magazine.

[Bajracharya et al., 2008] Bajracharya, M., Tang,
B., Howard, A., Turmon, M., and Matthies, L.
(2008). Learning long-range terrain classification
for autonomous navigation. In IEEE International
Conference on Robotics and Automation, pages
4018–4024.

[Balakirsky and Lacaze, 2000] Balakirsky, S. and La-
caze, A. (2000). World modeling and behavior gen-

29

eration for autonomous ground vehicle. In Proceed-
ings IEEE International Conference on Robotics
and Automation, volume 2, pages 1201–1206.

[Biesiadecki and Maimone, 2006] Biesiadecki, J. and
Maimone, M. (2006). The mars exploration rover
surface mobility flight software driving ambition.
In IEEE Aerospace Conference.

[Bradley et al., 2007] Bradley, D., Unnikrishnan, R.,
and Bagnell, J. A. (2007). Vegetation detection for
driving in complex environments. In International
Conference on Robotics and Automation.

[Buehler, 2006] Buehler, M. (2006). Summary of dgc
2005 results. Journal of Field Robotics, 23:465–466.

[Carsten et al., 2009] Carsten, J., Rankin, A., Fer-
guson, D., and Stentz, A. (2009). Global planning
on the mars exploration rovers: Software integra-
tion and surface testing. Journal of Field Robotics,
26:337–357.

[Dahlkamp et al., 2006] Dahlkamp, H., Kaehler, A.,
Stavens, D., Thrun, S., and Bradski, G. (2006).
Self-supervised monocular road detection in desert
terrain. In Proceedings of Robotics: Science and
Systems, Philadelphia, USA.

[Dima et al., 2004] Dima, C., Vandapel, N., and
Hebert, M. (2004). Classifier fusion for outdoor
obstacle detection. In International Conference on
Robotics and Automation, volume 1, pages 665 –
671. IEEE.

[Ferguson and Stentz, 2006] Ferguson, D. and
Stentz, A. (2006). Using interpolation to improve
path planning: The field D* algorithm. Journal of
Field Robotics, 23(2):79–101.

[Hadsell et al., 2009] Hadsell, R., Sermanet, P., Ben,
J., Erkan, A., Scoffier, M., Kavukcuoglu, K.,
Muller, U., and LeCun, Y. (2009). Learning long-
range vision for autonomous off-road driving. Jour-
nal of Field Robotics, 26:120–144.

[Halatci et al., 2007] Halatci, I., Brooks, C., and Iag-
nemma, K. (2007). Terrain classification and clas-
sifier fusion for planetary exploration rovers. In
IEEE Aerospace Conference.

[Hamner et al., 2006] Hamner, B., Singh, S., and
Scherer, S. (2006). Learning obstacle avoidance pa-
rameters from operator behavior. Journal of Field
Robotics, 23(1):1037–1058.

[Happold and Ollis, 2007] Happold, M. and Ollis, M.
(2007). Using learned features from 3d data for

robot navigation. Autonomous Robots and Agents,
76:61–69.

[Helmick et al., 2009] Helmick, D., Angelova, A.,
and Matthies, L. (2009). Terrain adaptive naviga-
tion for planetary rovers. Journal of Field Robotics,
26:391–410.

[Howard et al., 2007] Howard, A., Turmon, M.,
Matthies, L., Tang, B., Angelova, A., and Mjol-
sness, E. (2007). Towards learned traversability for
robot navigation: From underfoot to the far field.
Journal of Field Robotics, 23:1005–1017.

[Howard et al., 2005] Howard, A., Werger, B., and
Seraji, H. (2005). A human-robot mentor-protege
relationship to learn off-road navigation behav-
ior. In IEEE International Conference on Systems,
Man and Cybernetics, volume 1, pages 430–435
Vol. 1.

[Huertas et al., 2005] Huertas, A., Matthies, L., and
Rankin, A. (2005). Stereo-based tree traversabil-
ity analysis for autonomous off-road navigation. In
Seventh IEEE Workshops on Application of Com-
puter Vision, volume 1, pages 210–217.

[Iagnemma et al., 1999] Iagnemma, K., Genot, F.,
and Dubowsky, S. (1999). Rapid physics-based
rough-terrain rover planning with sensor and con-
trol uncertainty. In IEEE Internation Conference
on Robotics and Automation.

[Iagnemma et al., 2004] Iagnemma, K., Kang, S.,
Shibly, H., and Dubowsky, S. (2004). Online
terrain parameter estimation for wheeled mobile
robots with application to planetary rovers. IEEE
Transactions on Robotics, 20(5):921–927.

[Kalman, 1964] Kalman, R. (1964). When is a linear
control system optimal? Trans. ASME, J. Basic
Engrg., 86:51–60.

[Karlsen and Witus, 2007] Karlsen, R. and Witus,
G. (2007). Terrain understanding for robot navi-
gation. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 895–900.

[Kelly, 1995] Kelly, A. (1995). An Intelligent Pre-
dictive Control Approach to the High-Speed Cross-
Country Autonomous Navigation Problem. PhD
thesis, Robotics Institute, Carnegie Mellon Univer-
sity.

[Kelly et al., 2006] Kelly, A., Stentz, A., Amidi, O.,
Bode, M., Bradley, D., Diaz-Calderon, A., Hap-
pold, M., Herman, H., Mandelbaum, R., Pilarski,
T., Rander, P., Thayer, S., Vallidis, N., and

30

Warner, R. (2006). Toward reliable off road au-
tonomous vehicles operating in challenging envi-
ronments. International Journal of Robotics Re-
search, 25(5-6):449–483.

[Kim et al., 2006] Kim, D., Sun, J., Oh, S. M., Rehg,
J., and Bobick, A. (2006). Traversability classifi-
cation using unsupervised on-line visual learning
for outdoor robot navigation. In Proceedings IEEE
International Conference on Robotics and Automa-
tion, pages 518–525.

[Lacaze et al., 2002] Lacaze, A., Murphy, K., and
Delgiorno, M. (2002). Autonomous mobility for the
demo iii experimental unmanned vehicles. In in As-
soc. for Unmanned Vehicle Systems Int. Conf. on
Unmanned Vehicles (AUVSI 02.

[Lalonde et al., 2006] Lalonde, J.-F., Vandapel, N.,
Huber, D., and Hebert, M. (2006). Natural ter-
rain classification using three-dimensional ladar
data for ground robot mobility. Journal of Field
Robotics, 23(10):839–861.

[LeCun et al., 2006] LeCun, Y., Muller, U., Ben, J.,
Cosatto, E., and Flepp, B. (2006). Off-road obsta-
cle avoidance through end-to-end learning. In Ad-
vances in Neural Information Processing Systems
18. MIT Press.

[Manduchi et al., 2005] Manduchi, R., Castano, A.,
Talukder, A., and Matthies, L. (2005). Obstacle
detection and terrain classification for autonomous
off-road navigation. Autonomous Robots, 18:81–
102.

[Mason et al., 2000] Mason, L., Baxter, J., Bartlett,
P., and Frean, M. (2000). Boosting algorithms as
gradient descent. In Advances in Neural Informa-
tion Processing Systems 12, Cambridge, MA. MIT
Press.

[Ng and Russell, 2000] Ng, A. Y. and Russell, S.
(2000). Algorithms for inverse reinforcement learn-
ing. In Proc. 17th International Conf. on Machine
Learning.

[Olin and Tseng, 1991] Olin, K. and Tseng, D.
(1991). Autonomous cross-country navigation: an
integrated perception and planning system. IEEE
Expert, 6(4):16–30.

[Ollis et al., 2007] Ollis, M., Huang, W. H., and Hap-
pold, M. (2007). A bayesian approach to imitation
learning for robot navigation. In Proceedings of the
IEEE/RSJ International Conference on Intelligent
Robots and Systems.

[Pomerleau, 1989] Pomerleau, D. (1989). Alvinn: an
autonomous land vehicle in a neural network. Ad-
vances in neural information processing systems 1,
pages 305 – 313.

[Procopio et al., 2007] Procopio, M., Mulligan, J.,
and Grudic, G. (2007). Long-term learning us-
ing multiple models for outdoor autonomous robot
navigation. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages
3158–3165.

[Rasmussen, 2002] Rasmussen, C. (2002). Combin-
ing laser range, color, and texture cues for au-
tonomous road following. In IEEE Conference on
Robotics and Automation.

[Ratliff et al., 2006] Ratliff, N., Bagnell, J. A., and
Zinkevich, M. (2006). Maximum margin planning.
In International Conference on Machine Learning.

[Ratliff et al., 2007] Ratliff, N., Bradley, D., Bagnell,
J. A., and Chestnutt, J. (2007). Boosting struc-
tured prediction for imitation learning. In Ad-
vances in Neural Information Processing Systems
19, Cambridge, MA. MIT Press.

[Ratliff et al., 2009] Ratliff, N. D., Silver, D., and
Bagnell, J. A. (2009). Learning to search: Func-
tional gradient techniques for imitation learning.
Autonomous Robots.

[Seraji and Howard, 2002] Seraji, H. and Howard,
A. (2002). Behavior-based robot navigation on
challenging terrain: A fuzzy logic approach.
IEEE Transactions on Robotics and Automation,
18(3):308–321.

[Shneier et al., 2008] Shneier, M., Chang, T., Hong,
T., Shackleford, W., Bostelman, R., and Albus,
J. (2008). Learning traversability models for au-
tonomous mobile vehicles. Autonomous Robots,
24:69–86.

[Silver et al., 2008] Silver, D., Bagnell, J. A., and
Stentz, A. (2008). High performance outdoor nav-
igation from overhead data using imitation learn-
ing. In Proceedings of Robotics Science and Sys-
tems.

[Silver et al., 2009a] Silver, D., Bagnell, J. A., and
Stentz, A. (2009a). Applied imitation learning for
autonomous navigation in complex natural terrain.
In Field and Service Robotics.

[Silver et al., 2009b] Silver, D., Bagnell, J. A., and
Stentz, A. (2009b). Perceptual interpretation for
autonomous navigation through dynamic imitation

31

learning. In International Symposium on Robotics
Research.

[Silver et al., 2006] Silver, D., Sofman, B., Vandapel,
N., Bagnell, J. A., and Stentz, A. (2006). Experi-
mental analysis of overhead data processing to sup-
port long range navigation. In Proceedings of the
IEEE/JRS International Conference on Intelligent
Robots and Systems.

[Singh et al., 2000] Singh, S., Simmons, R., Smith,
T., Stentz, A., Verma, V., Yahja, A., and Schwehr,
K. (2000). Recent progress in local and global
traversability for planetary rovers. IEEE Confer-
ence on Robotics and Automation.

[Sofman et al., 2006] Sofman, B., Ratliff, E. L., Bag-
nell, J. A., Cole, J., Vandapel, N., and Stentz,
A. (2006). Improving robot navigation through
self-supervised online learning. Journal of Field
Robotics, 23(12).

[Stavens and Thrun, 2006] Stavens, D. and Thrun,
S. (2006). A self-supervised terrain roughness esti-
mator for off-road autonomous driving. In In Proc.
of Conf. on Uncertainty in AI, pages 13–16.

[Stentz et al., 2007] Stentz, A., Bares, J., Pilarski,
T., and Stager, D. (2007). The crusher system
for autonomous navigation. In AUVSIs Unmanned
Systems.

[Stentz and Hebert, 1995] Stentz, A. and Hebert, M.
(1995). A complete navigation system for goal ac-
quisition in unknown environments. Autonomous
Robots, 2(2).

[Sun et al., 2007] Sun, J., Mehta, T., Wooden, D.,
Powers, M., Rehg, J., Balch, T., and Egerstedt, M.
(2007). Learning from examples in unstructured,
outdoor environments. Journal of Field Robotics,
23:1019–1036.

[Talukder et al., 2002] Talukder, A., Manduchi, R.,
Rankin, A., and Matthies, L. (2002). Fast and reli-
able obstacle detection and segmentation for cross-
country navigation. In IEEE Intelligent Vehicles
Symposium, pages 610–618.

[Thrun et al., 2006] Thrun, S., Montemerlo, M.,
Dahlkamp, H., Stavens, D., Aron, A., Diebel, J.,
Fong, P., Gale, J., Halpenny, M., Hoffmann, G.,
Lau, K., Oakley, C., Palatucci, M., Pratt, V.,
Stang, P., Strohband, S., Dupont, C., Jendrossek,
L.-E., Koelen, C., Markey, C., Rummel, C., van
Niekerk, J., Jensen, E., Alessandrini, P., Bradski,
G., Davies, B., Ettinger, S., Kaehler, A., Nefian,

A., and Mahoney, P. (2006). Stanley: The robot
that won the darpa grand challenge. Journal of
Field Robotics, 23(9):661–692.

[Urmson et al., 2006] Urmson, C., Ragusa, C., Ray,
D., Anhalt, J., Bartz, D., Galatali, T., Gutierrez,
A., Johnston, J., Harbaugh, S., ldquo, H., Kato,
Y., Messner, W., Miller, N., Peterson, K., Smith,
B., Snider, J., Spiker, S., Ziglar, J., Whittaker,
W. L., Clark, M., Koon, P., Mosher, A., and Stru-
ble, J. (2006). A robust approach to high-speed
navigation for unrehearsed desert terrain. Journal
of Field Robotics, 23(8):467–508.

[Wellington et al., 2006] Wellington, C., Courville,
A., and Stentz, A. (2006). A generative model of
terrain for autonomous navigation in vegetation.
The International Journal of Robotics Research,
25(1):1287 – 1304.

32

